Свариваемость углеродистых конструкционных сталей. Как изменяется свариваемость с уменьшением содержания углерода в стали


Свариваемость углеродистых конструкционных сталей

Рекомендуем приобрести:

Установки для автоматической сварки продольных швов обечаек - в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе! Защита от излучения при сварке и резке. Большой выбор. Доставка по всей России!

Углеродистыми конструкционными сталями называются такие, в которых содержание углерода находится в пределах 0,1— 0,6%, а количество остальных примесей не превышает: Мn — 0,7%; Si — 0,4%; Р — 0,05%; S — 0,07%; O2— 0,05%. Возможно наличие и других случайных примесей, содержание которых в таких сталях должно быть не более: Сu — 0,5%; As — 0,05%; Сr — 0,3%; Ni — 0,3%. Обычно в сварных конструкциях применяют углеродистую сталь, выплавляемую в мартеновских печах и имеющую пониженное содержание вредных газов и примесей (N2, S и Р).

В зависимости от содержания С углеродистые конструкционные стали разделяют на низко-, средне- и высокоуглеродистые.

К низкоуглеродистым относят стали, содержащие до 0,25% С (СтЗ, стали 10, 15, 20, М16С, 22К и др.). Они обладают хорошей свариваемостью. Металл шва по своему химическому составу обычно несколько отличается от основного (понижено содержание углерода и повышено — марганца и кремния). Уменьшение содержания углерода может привести к снижению прочности сварного шва. Чтобы избежать этого, в металл шва вводят дополнительно марганец и кремний. Повышению прочности способствует также ускоренное охлаждение шва. Поэтому при сварке низкоуглеродистых сталей обеспечить равнопрочность сварного шва основному металлу легко.

К среднеуглеродистым конструкционным сталям относят спокойные стали, в которых содержание С колеблется в пределах 0,26 — 0,45% (Ст5, стали 25, 30, 35, 40, 25Г, 30Г, 35Г и др.). Повышенное содержание углерода ухудшает свариваемость этих сталей, так как оно снижает стойкость металла шва к образованию кристаллизационных трещин и делает возможным появление в околошовной зоне малопластичных структур и холодных трещин.

Усиление чувствительности швов к кристаллизационным трещинам объясняется тем, что углерод повышает степень дендритной неоднородности распределения серы и способствует выделению ее по границам кристаллитов в виде легкоплавких сульфидных включений, увеличивающих ТИХ. Чтобы получить качественный шов, следует снизить содержание углерода в нем за счет применения соответствующих сварочных материалов и уменьшения доли основного металла в наплавленном. Необходимую же равнопрочность шва основному металлу получают дополнительным легированием элементами, упрочняющими феррит (марганец, кремний).

Повышенное содержание углерода в среднеуглеродистых сталях облегчает возможность появления мартенсита в околошовной зоне. Для углеродистого мартенсита характерны высокая твердость (HV > 600) и хрупкость, объясняемые пластинчатой формой его строения. Протекающее же при низких температурах (<350°С) мартенситное превращение резко повышает уровень внутренних напряжений.

Чтобы предотвратить образование малопластичных и хрупких структур при сварке среднеуглеродистых сталей, следует замедлять охлаждение металла, регулируя режим сварки, а если необходимо, предварительно подогревать изделие. В ряде случаев для обеспечения высокой деформационной способносги сварного соединения и его равнопрочности с основным металлом после сварки назначают термическую обработку (закалку с отпуском, нормализацию). Использование среднеуглеродистых сталей для сварки не всегда целесообразно. По металлургической обработке различают стали спокойные, полуспокойные и кипящие. Для сварки лучше спокойные стали. По способу производства бывают стали мартеновские и бессемеровские (конверторные). Для сварки лучше — мартеновские. В настоящее время в связи с коренными улучшениями производства конверторных сталей они могут считаться вполне при годными для сварки.

К высокоуглеродистым конструкционным сталям относят стали, содержащие 0,46—0,7% С. Свариваемость их еще более затруднена по тем же причинам, что и свариваемость средне-углеродистых сталей. Для преодоления трудностей рекомендуются те же способы. Высокоуглеродистые стали относят к трудносваривающимся.

www.autowelding.ru

Основные проблемы свариваемости разнородных сталей

МАТЕРИАЛЫ И ИХ ПОВЕДЕНИЕ ПРИ СВАРКЕ

Использование сварных соединений из разнородных сталей рационально в случаях, когда работоспособность сонструкции определяется комплексом необходимых свойств, получение которых труднодостижимо или эко­номически не выгодно при использовании однородных материалов. Применение разнородных сталей в сварных соединениях, как правило, связано со скачкообразным изменением условий эксплуатации отдельных участков конструкции (температуры, среды, нагрузки).

Проблемы свариваемости таких сталей связаны с осо­бенностями формирования состава и структуры шва и зоны сплавления, а также прилегающих к ним участков основного металла как в процессе сварки, так и при тер­мообработке сварного соединения или его эксплуатации

Металл шва из сталей разного легирования или раз­ных структурных классов вследствие перемешивания электродного и основного металлов всегда будет обла­дать химической и структурной неоднородностями, кото­рые особенно четко выражены на линии сплавления. Эти неоднородности приводят к появлению непластич­ных кристаллизационных и деформационных прослоек переменного состава и к различному уровню остаточных напряжений у сваренных кромок, что вызывает механи­ческую неоднородность всего соединения. Указанные особенности усложняют технологию сварки разнород­ных сталей.

Рассмотрим основные причины появления неодно­родностей и усложнения свариваемости разнородных сталей.

1. При сварке сталей одного структурного класса в ре­зультате неодинакового перемешивания наплавленного металла с основным (в центре шва и у границы сплав­ления) со стороны шва возникают прослойки перемен­ного состава шириной 0,2...0,6 мм. Их свойства при раз­ном уровне легирования сталей в большинстве случаев имеют промежуточные значения между свойствами ос­новного металла и металла шва. Влияние этих просло­ек на снижение работоспособности сварного соедине­ния незначительно при условии, что электродный (наплавляемый) металл того же структурного класса, что и свариваемые, например, ВСтЗ + 09Г2 + Э46.

Если же стали одного структурного класса (напри­мер, перлитные) свариваются электродными материала­ми другого структурного (например, аустенитными) класса, то в результате перемешивания у границы сплав­ления образуются кристаллизационные прослойки пе­ременного состава, содержащие, как правило, 3... 12%Сг и 2...8%Ni и имеющие чаще всего мартенситную струк­туру (см. диаграмму Шеффлера). Ширина таких просло­ек тем больше, чем меньше запас аустенитности металла шва. Например, при сварке стали ЗОХГСА электродом типа Э-12Х18Н9 ширина мартенситной прослойки X будет больше, чем при сварке электродом типа Э-Х15Н25МЗТ (рис. 15.1).

Рис. 15.1. Схема слияния степени легирования шва на ширину кристаллизационных прослоек: X, — расстояние от границы сплавления

2. При сварке разнолегированных сталей (низколеги­рованной с высоколегированной) сварочными матери­алами, содержащими большое количество энергичных карбидообразователей (Сг, С, Мп, Ті, V), в близлежащих ко шву зонах с обеих сторон возможно образование диф­фузионных переходных прослоек fособенно при длитель­ной эксплуатации и высоких температурах). Такой про­цесс характерен при сварке перлитных сталей (09Г2, 12ХМ) с перлитными сталями более высокого легиро­вания (12Х1МФ) или перлитных сталей с высоколеги­рованными мартенситными, ферритными или аустенит - ными сталями, т. е. сталями другого структурного класса. В этом случае в зоне сплавления со стороны менее легированной стали образуется обезуглероженная зона, а со стороны более легированного шва или более легированной стали — прослойка науглероженного ме -

пшлла высокой твердости, содержащего большое коли­чество карбидов. Наибольшей ширины прослойки дос - іигают в зоне сплавления углеродистой стали с аусте - нитной Объясняется это интенсивной диффузией углерода из шва к элементам-карбидообразователям при длительном воздействии температур нагрева Т > 450— 800 "С и образованием в результате диффузии термичес­ки стойких карбидов типа Cr23C6, МоС, VC, НС и др. Ьолыиое влияние на ширину этих прослоек оказывает количество углерода в менее легированной стали (или шве): чем оно ниже, тем шире зона обезуглероживания, гак как углерод диффундирует в шов из более отдален­ных от линии сплавления участков. В то же время по­вышение содержания углерода в шве увеличивает про - гяженность науглероженной прослойки. Указанные процессы часто вызывают в шве хрупкие разрушения в процессе длительной эксплуатации при высоких темпе­ратурах из-за изменения в течение времени эксплуата­ции структурного состояния шва или участков околошов­ной зоны (по существу протекает процесс термического старения).

3. При сварке толстостенных соединений из сталей разного легирования в швах и околошовных участках во шикает объемное напряженное состояние, вызывающее хрупкие локальные разрушения соединения. Например, пониженная прочность обезуглероженной зоны стано­вится причиной разрушения под действием коррозион­ной среды (коррозионное растрескивание)

Говоря о неоднородностях соединений в участках сплавления, необходимо иметь в виду, что степень их от­рицательного проявления зависит не только от химичес­ких составов основных и электродных материалов, но и or долей участия основного металла в шве и степени проплавления стыкуемых кромок, т. е. по существу от режимов сварки и типов соединений, техники выпол­нения швов и т. п.

Прогнозировать и оценивать состав и сгруктурное со­стояние металла шва и зоны сплавления из высоколе­гированных сталей можно по диаграмме Шеффлера (см. рис. 13.3). Используя ее, можно выбирать сварочные ма­териалы, определять влияние режимов (доли участия) сварки на структуру шва, принимать решение о необхо­димости термической обработки и условиях эксплуата­ции сварного соединения. Следует, однако, подчеркнуть, что структурное состояние швов из низколегированных сталей по диаграмме Шеффлера определяется весьма ориентировочно, так как диаграмма не отражает фазо­вых превращений в сварном соединении.

В практике сварочного производства встречаются в основном два варианта технологии сварки разнородных сталей:

1) сварка сталей одного структурного класса, но раз­ного легирования;

2) сварка сталей разного структурного класса и раз­ного легирования.

Рассмотрим подробнее основные особенности свари­ваемости, техники и технологии сварки по обоим вари­антам.

21.3.1. Сварка алюминия и его сплавов с медью Основной проблемой сварки является различие в теплофизических, химических и механических свой­ствах алюминия и меди, их ограниченной взаимной ра­створимости и в образовании в …

21.2.1. Сварка стали с алюминием и его сплавами Получение требуемого уровня эксплуатационных ха­рактеристик в таких соединениях затруднено различи­ем температур плавления и ограниченной взаимной ра­створимостью алюминия и железа. Аргонодуговая сварка вольфрамовым …

Сварные конструкции из разнородных металлов и сплавов применяются в судостроении, химической и нефтехимической, авиационной и энергетической промышленности. В целях снижения веса, улучшения эксплуатационных характеристик изделий, экономии цветных металлов или легированных …

msd.com.ua

Углерод — Содержание в стали влияние на сварку

Свариваемость сталей зависит от степени легирования, структуры и содержания примесей. Наибольшее влияние на свариваемость сталей оказывает углерод. С увеличением содержания углерода, а также ряда других легирующих элементов свариваемость сталей ухудшается. Для сварки конструкций в основном применяют конструкционные низкоуглеродистые, низколегированные, а также среднелегированные стали. Главными трудностями при сварке этих сталей являются  [c.45] Кузнечная сварка (рис. 69,з) — соединение в одно целое двух концов стали, нагретых до температуры белого каления. Способность стали свариваться зависит от содержания в ней углерода и других примесей. С повышением содержания углерода до 0,5% сталь значительно утрачивает способность свариваться. Отрицательное влияние на свариваемость также оказывает содержание в стали хрома, кремния и особенно серы и фосфора. Содержание марганца улучшает свариваемость. Свариваемые концы предварительно оттягивают, затем накладывают плотно один на другой и проковывают в таком положении кувалдой до сварки в одно целое.  [c.104]

За последние годы А. В. Рябченков, А. И. Максимов и Б. И. Бекетов [42] провели широкие исследования по оценке жаростойкости ферритных сталей. Ими установлено, что хромистые стали по-разному окисляются при высоких температурах воздушной среды в зависимости от содержания в них углерода. Влияние углерода на жаростойкость этих сталей в основном отрицательно из-за его выгорания в поверхностном слое металла при сварке. Стали с содержанием углерода 0,0061—0,213% при испытаниях при температуре 1100°С за время 50 ч подвергаются локальному окислению. Скорость окисления имеет максимум при содержании углерода 0,15%. В стали, содержащей 0,21% углерода, после выдержки при 1100°С около 15— 20% аустенита.  [c.116]

Углекислый газ 228 Углерод — Содержание в стали и влияние на сварку 34 Угол наклона электрода и изделия — Влияние на форму, шва при автоматической сварке под флюсом 160 Усадка наплавленного металла 20  [c.514]

Углерод — важнейший элемент, определяющий структуру и свойства сварных соединений и поведение при эксплуатации. Вместе с тем углерод оказывает резко отрицательное влияние на стойкость металла шва против кристаллизационных трещин. При сварке углеродистых и низколегированных сталей углерод усиливает вредное действие серы. При сварке высоколегированных сталей углерод способствует образованию по границам кристаллитов легкоплавких эвтектик карбидного происхождения, что также снижает стойкость швов против кристаллизационных трещин. Критическое содержание углерода зависит от конструкции узла, наличия или отсутствия предварительного подогрева, формы швов и содержания в стали других элементов, в первую очередь серы.  [c.70]

Углерод повышает прочность, снижает пластичность и вязкость легированной стали он также повышает чувствительность к перегреву и закаливаемости стали и поэтому оказывает отрицательное влияние на ее свариваемость. Увеличение содержания углерода в стали при обычных условиях сварки способствует образованию трещин в околошовной зоне и шве. В современных низколегированных сталях содержание углерода находится в пределах 0,18—0,25%. В сталях, к свариваемости которых предъявляют повышенные требования, содержание углерода не должно превышать 0,12—0,14%. Низко- и среднелегированные конструкционные стали повышенной прочности, содержащие до 0,45% углерода, сваривают с предварительным подогревом, подвергая сварные соединения последующей термической обработке. Влияние углерода усиливается при повышенном содержании в стали марганца, хрома и ряда других элементов.  [c.14]

Технологические свойства характеризуются способностью материала подвергаться различным видам обработки — пластической деформации гибке, вальцовке, сварке, термической обработке и др. Учет технологических свойств весьма важен при проведении ремонтных работ. Работоспособность оборудования в значительной степени зависит от надежности сварных соединений. На свариваемость стали наибольшее влияние оказывает содержание в ней углерода. Ориентировочную оценку свариваемости низколегированной стали можно дать, пользуясь значением углеродного эквивалента  [c.24]

На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается.  [c.100]

Химический состав существенно влияет на свариваемость одинаковых металлов (сталей и других сплавов). Особенно сильное влияние на свариваемость сталей оказывает содержание углерода. Повышенное содержание углерода в стали влияет резко отрицательно. Стали с содержанием углерода больше 0,3% требуют, в ответственных случаях, предварительного подогрева свариваемой конструкции до 7 = 150 -ь 500° С, что усложняет технологию сварки.  [c.467]

Углерод оказывает резко отрицательное влияние на стойкость металла шва к образованию кристаллизационных трещин. При сварке углеродистых и низколегированных сталей углерод усиливает вредное действие серы. Учитывая это, применяют сварочную проволоку с низким содержанием углерода и уменьшают долю основного металла в шве.  [c.30]

Наибольшее влияние на свариваемость сталей оказывает углерод. Она ухудшается при увеличении содержания углерода, а также ряда других легирующих элементов. Для изготовления сварных изделий применяют в основном конструкционные низкоуглеродистые, низколегированные и легированные стали. Главными трудностями при сварке легированных сталей являются их склонность к образованию закалочных структур, горячих и холодных трещин, а также ухудшение механических свойств — в первую очередь снижение пластичности в зоне сварки. Чем выше содержание углерода в стали, тем сильнее проявляются эти недостатки и тем труднее обеспечить необходимые свойства сварного соединения.  [c.54]

Автомобильные детали, подлежащие сварке, в большинстве случаев изготовляются из листового материала штамповкой и, редко, литьем или горячей штамповкой. При выборе материала для изготовления деталей, подлежащих сварке, учитывают эксплуатационные требования к детали, требования штамповки и сварки. Лучшие результаты дает сварка однородных металлов сварка разнородных металлов более трудна. Качество сварных соединений зависит от свариваемости соединяемых металлов, от состава металла и от состояния свариваемых поверхностей (загрязнения, микронеровности, пленки, раковины и т. д.). Если в стали содержится более 0,3% углерода, то такая сталь имеет пониженные сварочные свойства, возможно образование закалочной структуры. Если сталь имеет повышенное содержание углерода (0,4—0,5%), то следует сваривать с предварительным подогревом деталей, а по окончании сварки детали медленно охладить во избежание образования закалочных структур и трещин. Содержание марганца в металле до 0,3—0,8% оказывает положительное влияние на качество сварки, а повышение его процентного содержания повышает закаливаемость. При изготовлении ответственных и сложных автомобильных деталей, подвергающихся сварке, рекомендуется применять листовую сталь 1 и 2-й групп. Чистая поверхность листовой холоднокатаной стали указанных групп обеспечивает сварку высокого качества без предварительной очистки поверхности.  [c.285]

Свариваемость различных металлов и сплавов зависит от степени легирования. Наибольшее влияние на свариваемость стали оказывает углерод — с увеличением его содержания свариваемость стали ухудшается. Высокие скорости охлаждения металла зоны термического влияния, свойственные процессам сварки, вызывают образование закалочных структур. Возрастает опасность образования трещин в шве и зоне термического влияния. Принято считать, что стали, содержащие менее 0,25—  [c.384]

Свариваемостью называют свойство металла пли сочетания металлов образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия. На свариваемость стали наибольшее влияние оказывает ее химический состав. Как известно, сталь в основном состоит из железа с неизменной примесью углерода. По содержанию углерода стали разделяются на низкоуглеродистые (до 0,25% С) среднеуглеродистые (0,25—0,4 % С) высокоуглеродистые (0,46—0,9 % С). Хорошо свариваются низкоуглеродистые стали, широко применяемые для строительных конструкций. Сварка среднеуглеродистых сталей возможна при условии соблюдения особой технологии, включающей, как правило, предварительный прогрев и последующую термообработку, устраняющие закалку соединения. Ручная дуговая сварка высокоуглеродистых сталей не рекомендуется. Она возможна только при соблюдении технологии, которая, однако, не всегда обеспечивает получение соединения, равнопрочного основному металлу.  [c.125]

При сварке хромоникелевой стали с содержанием молибдена 2,5—4% применяют проволоку с содержанием молибдена, но также с очень низким содержанием углерода. В случаях, когда при сварке происходит угар какого-либо легирующего элемента и это может оказать вредное влияние на свойства ш(ва, то необходимо применять электроды с более высоким содержанием именно этого элемента или при ручной сварке компенсировать выгорание того или иного элемента введением соответствующего компонента в электродное покрытие. Применение в качестве присадочного материала хромоникелевой стали с повышенным содержанием углерода ведет к появлению склонности к межкристаллитной коррозии -и сварных швов.  [c.92]

Большинство специальных примесей и углерод повышают прока-ливаемость стали, так как увеличивают устойчивость аустенита и замедляют процесс распада его при охлаждении. Основное влияние большинства специальных примесей и углерода заключается в том, что они снижают критическую скорость охлаждения и при определенном содержании могут вызвать закалку даже при охлаждении на воздухе. При сварке большинства легированных сталей вероятность образования мартенсита в наплавленном металле и в зоне термического влияния весьма высока, потому что отвод тепла от металла шва к металлу зоны термического влияния происходит значительно быстрее, чем отвод тепла в окружающий воздух. Это является одним из основных затруднений при сварке легированных сталей.  [c.26]

На свариваемость сталей оказывают влияние углерод и примеси, имеющиеся в стали. С увеличением в стали содержания углерода, а также других примесей, ее свариваемость ухудшается. Это объясняется тем, что углерод повышает склонность стали к образованию закалочных структур в шве и околошовной зоне, что увеличивает хрупкость и способствует образованию трещин. Кроме того, углерод при сварке выгорает с образованием газообразных продуктов, создающих в металле шва поры. Отрицательное влияние на свариваемость оказывает также насыщенность металла газами кислородом, азотом и водородом.  [c.81]

С целью повышения стойкости основного металла против перехода в хрупкое состояние следует применять для ответственных сварных конструкций стали с пониженным содержанием углерода. Значительное влияние на стойкость против перехода в хрупкое состояние оказывают тип электродов, состав флюса, режим сварки и другие технологические факторы. При разработке технологии сварки ответственных конструкций все это следует учитывать.  [c.156]

Однако искусственное охлаждение Применимо только прй сварке низкоуглеродистых сталей. Для уменьшения остаточных деформаций и напряжений при сварке сталей с повышенным содержанием углерода и легированных закаливающихся сталей метод искусственного охлаждения неприменим, так как он может привести к образованию малопластичных закалочных структур. Некоторое влияние на величину сварочных деформаций оказывает также и начальная температура изделия. При сварке в условиях естественных низких температур деформации снижаются весьма мало.  [c.167]

На рис. 6-9 приведена зависимость между критическим содержанием углерода в металле шва и коэффициентом формы шва для дуговой сварки под флюсом углеродистых конструкционных сталей. Все остальные факторы, оказывающие влияние на стойкость шва против образования трещин, практически постоянны. Содержание кремния в металле шва до 0,4%, содержание серы — до 0,04%. С увеличением коэффициента формы шва до определенного предела критическое содержание углерода возрастает. В зависимости от значения коэффициента формы шва данное содержание углерода может быть выше или ниже критического.  [c.235]

Наплавкой восстанавливаются автомобильные детали, изготовленные, как указывалось, из конструкционных углеродистых и легированных сталей и термически обработанные. При наплавке и сварке этих деталей встречаются известные трудности, связанные с повышенным содержанием в металле деталей углерода и легирующих элементов. Вследствие влияния высокой температуры механические свойства деталей, термически обработанных на высокую поверхностную твердость, снижаются. Для восстановления первоначальных механических свойств необходимо давать химико-терми-ческую или термическую (в зависимости от деталей) обработку, что усложняет и удорожает ремонт.  [c.221]

Сварка прокаткой осуществляется в вакууме. Выявлено отрицательное влияние углерода на механические характеристики соединения из-за образования карбида титана (Т1С). Увеличение содержания углерода в стали с 0,02 до 0,45 % ведет к снижению уровня прочности с 260 до 140 МПа. При использовании прокладок из ванадия содержание углерода в нем должно быть [c.193]

В связи с этим в шов с расплавленным основным металлом поступают легирующие элементы, содержащиеся в свариваемой стали, в том числе и углерод, концентрация которого в сталях этой группы достаточно высока. Влияние содержания углерода, серы и марганца в шве на склонность к образованию горячих трещин схематически представлепо на рис. 124. Линия I служит границей раздела составов с низким содержанием углерода ( ] m. при которых образуются или не образуются горячие трещины. При повышенном содержании углерода [С] , ш такой границей будет линия 5, в этом случае даже при низком содержании серы и большой концентрации марганца в шве могут возникнуть горячие трещины. При механизированной сварке под флюсом необходимы подготовка кромок, техника и режимы сварки, при которых доля основного металла в шве будет минимальной.  [c.252]

Рассмотренный кратко термодеформационный цикл сварки, обусловливая появление уравновешенных упругих деформаций в зоне сварного соединения, приводит к возникновению остаточных сварочных напряжений в сварном соединении. В зонах, где должны происходить деформации сжатия, возникают растягивающие остаточные напряжения, а уравновешивающие их сжимающие напряжения соответственно появляются в зонах с деформацией растяжения. На величину и распределение остаточных напряжений кроме неравномерных деформаций изменения объема металла при охлаждении оказывают влияние и объемные изменения, протекающие ниже температуры распада аустенита. Эти изменения у различных сталей протекают по-разиому и зависят от содержания в стали углерода и легирующих элементов. На рис. 4 представлена схема распределения остаточных напряжений в сварном соединении. Уровень напряжений и размеры растянутых и сжатых зон зависят от условий сварки и состава свариваемой стали. По данным табл. 2 можно судить о роли состава стали в возникновении остаточных напряжений в сварном соединении. Экспериментально определенные величина и распределение остаточных напряжений в сварных соединениях труб с толщиной стеики 30—36 м.м из стали 15ХМ, выполненных ручной дуговой сваркой с получением металла шва близкого состава, приведены на рис. 5.  [c.408]

При окислении стали в первую очередь образуется закись железа. Последняя, будучи растворима в жидкой стали, непосредственно особо вредного влияния на процесс сварки не оказывает. При возрастании содержания закиси железа будут лишь несколько снижаться механические свойства металла шва. Однако повышение концентрации закиси железа вызывает развитие вторичных реакций. Находящиеся в стали примеси (С, Мп, Сг, 81, V, Т1,А1 и др.), упругость диссоциации окислов которых ниже упругости диссоциации закиси железа, начинают взаимодействовать с закисью железа с образованием газов (СО) или шлаковых включений (МпО, 8102, Сг20д и т. п.). Как окись углерода, так и остальные окислы практически в стали не растворяются. Поэто-  [c.356]

Хотя в подавляющем большинстве случаев сварки плавлением аустенитных сталей и сплавов реакция углерода не получает заметного развития, знание ее особенностей необходимо для специалистов-сварщиков. Ниже будет показано, что углерод в известных условиях оказывает благоприятное влияние на стойкость аустенитных швов против образования горячих трещин. Поэтому в отдельных случаях может пойадобиться введение дополнительного количества углерода в металл шва. На практике в настоящее время для повышения содержания углерода в металле аустенитного шва используется следующее 1) введение углерода в шов через электродное покрытие, содержащее углеродистые ферросплавы 2) применение карбидных плавленых флюсов (см. гл. VI) 3) сварка в углекислом газе. При сварке в углекислом газе или в газовых смесях, содержащих СОа, возможно некоторое повышение содержания углерода в шве за счет протекания известной реакции  [c.72]

При сварке аустенитных сталей действие углерода проявляется по-разному, в зависимости от изменения его концентрации, а также композиции шва и содержания в нем легирующих примесей. При повышении содержания углерода в швах типа 18-8 от 0,06—0,08% до 0,12—0,14%, наблюдаемом, например, при сварке в Og, склонность к трещинообразованию может возрасти, причем склонность к трещинам заметно усиливается, если в шве содержится титан, ниобий и другие энергичные карбидообразователи. В этом случае вредное действие углерода связано с появлением по границам кристаллов аустенита легкоплавких карбидных звтектик ледебурит-ного типа. Иными словами, углерод в данных условиях действует так же, как при сварке углеродистых и низколегированных сталей. В связи с этим необходимо указать на недопустимость использования электродной проволоки со следами графитовой смазки на поверхности. Дальнейшее повышение содержания углерода, например до 0,18—0,20%. приводит к резкому усилению трещино-образования. В этом случае вредное влияние углерода усиливается вследствие аустенитизации структуры шва. В известном диапазоне концентраций углерод по своему действию уподобляется никелю — он способствует утолщению межкристаллитных прослоек (аустени-тизация) и снижению температуры их затвердевания. По мере дальнейшего увеличения содержания углерода в шве, по достижении определенной критической концентрации, влияние этого элемента на трещинообразова ние внезапно изменяется. Углерод из возбудителя горячих трещин превращается в средство их устранения [15, 25]. Изменение поведения углерода связано с измельчением структуры и увеличением количества эвтектической жидкости, которая, заполняя промежутки между кристаллами, залечивает горячие трещины.  [c.198]

Считается, что при H S горячим трещинам при сварке. Наиболее сильное влияние на повышение склонности металла швов к горячим трещинам оказывает сера, образующая с железом легкоплавкую эвтектику (температура плавления FeS составляет 1193 °С, а FeS2- 682 °С), а также углерод. В связи с этим для предотвращения горячих трещин в металле швов теплоустойчивых сталей следует при сварке применять сварочные материалы с пониженным содержанием серы (ниже допускаемого по стандарту уровню, по возможности) в сочетании с содержанием выше 0,6 % марганца, благодаря которому при сварке реализуется процесс очищения металла от серы (процесс десульфурации) за счет перехода соединений типа MnS в шлак.  [c.85]

Никель при содержании до 1 % в стали, содержащей 0,2 % С, существенно свариваемость не ухудшает. При повышении содержания никеля свариваемость ухудшается, но до 1,5 % Ni остается удовлетворительной. При более высоком содержании никеля либо должно быгь снижено содержание углерода в стали, либо приняты специальные технологические меры для обеспечения надлежащего качества сварных соединений. Отрицательное влияния никеля на свариваемость связано с повышением устойчивости аустенита и увеличением в продуктах его распада в ЗТВ после сварки мартенсита и бейнита. Кроме того, никель увеличивает растворимость в стали водорода и благоприятствует тем самым повышению склонности к холодным трещинам при сварке.  [c.314]

На положение мартенситной точки существенное влияние оказывает содержание кремния, марганца и других растворимых в аустените примесей. У сталей обычного приготовления критическая скорость значительно нике, чем у сталей повышенной чистоты. Считается, что при охлаждении в принятых средах в сталях с содержанием углерода до 0,1 % мартенсит вообще не может быть получен, так как критическая скорость закалки велика. При сварке давлением, когда скорости охлаждения соответствуют приведенным выше, в сталях с содержанием углерода 0,1—0,2% в околошовной зоне всегда. Образуются участки мартенсита или троосто-мартенсиТа (рис. 23, си), а в среднеуглеродистых сталях — игольчатый i фер]р йт и м ф (рис. 23, 6). Шов — хрупкий,  [c.39]

Испытание механических свойств металла шва и сварного соединения при различных температурах, определение стойкости против коррозии и других специальных характеристик в соответствии со стандартом на эти испытания. Свариваемость стали в определенной мере зависит от ее химического состава. Углерод, определяю-ш,ий многие свойства стали, оказывает влияние и на ее свариваемость. Содержание его до 0,25% не влияет на свариваемость стали, поэтому все низкоуглвродистые стали обладают хорошей свариваемостью. Содержание углерода более 0,25% ухудшает свариваемость. Высокоуглеродистые стали сваривают, применяя специальные технологические приемы. Марганец при обычном содержании его в стали до 0,8% на свариваемость не влияет. Однако в процессе сварки марганцовистых сталей (1,2% и более марганца) могут появиться трещины, так как марганец способствует образованию закалочных струк-  [c.97]

Углерод оказывает сильное влияние на качество сварного шва. Повышение содержания углерода сказывается на прочности, твердости и вязкости шва. С увеличением содержания углерода в стали (выше 0,3%) повышается самозакаливаемость переходной зоны в основном металле и сталь становится более хрупкой. При газовой сварке влияние углерода проявляется значительно меньше, чем при дуговой.  [c.491]

Технологию сварки для этих сталей выбирают из условий соблюдения комплекса требований, обеспечивающих прежде всего равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном соединении. Сварное соединение должно быть стойким против перехода в хрупкое состояние, а деформация конструкции должна быть в пределах, не отражающихся на ее работоспособности Металл шва при сварке низкоуглеродистой стали незпачительно отличается по своему составу от основного металла — снижается содержание углерода и повышается содержание марганца и кремния. Однако обеспечение равнопрочности при дуговой сварке не вызывает затруднений. Это достигается за счет увеличения скорости охлаждения и легирования марганцем и кремнием через сварочные материалы. Влияние скорости охлаждения в значительной степени проявляется при сварке однослойных швов, а также в последних слоях многослойного шва. Механические свойства металла околошовной зоны подвергаются некоторым изменениям по сравнению со свойствами основного металла — при всех видах дуговой сварки это незначительное упрочнение металла в зоне перегрева. При сварке стареющих (например, кипящих и полуспокойных) низкоуглеродистых сталей на участке рекристаллизации околошовной зоны возможно снижение ударной вязкости металла. Металл околошовной зоны охрупчивается более интенсивно при многослойной сварке по сравнению с однослойной. Сварные конструкции из низкоуглеродистой стали иногда подвергают термической обработке. Однако у конструкций с угловыми однослойными швами и многослойными, наложенными с перерывом, все виды термической обработки, кроме закалки, приводят к снижению прочности и повышению пластичности металла шва. Швы, выполненные всеми видами и способами сварки плавлением, имеют вполне удовлетворительную стойкость против образования кристаллизационных трещин из-за низкого содержания углерода. Однако при сварке стали с верхним пределом содержания углерода могут появиться кристаллизационные трещины, прежде всего в угловых швах, первом слое многослойных стыковых швов, односторонних швах с полным проваром кромок и первом слое стыкового шва, сваренного с обязательным зазором.  [c.102]

Решаюшее влияние на хладноломкость ферритных сталей оказывают иримеси внедрения — углерод и азот. На рис. 24 показано влияние суммарного содержания этих элементов на температуру перехода стали Х17 в хрупкое состояние, определенную испытаниями на ударную вязкость на образцах типа Шарпи. Сталь прошла термическую обработку, имитирующую влияние сварочного цикла — нагрев при 1100° С в течение 10 мин и охлаждение в воде. После указанной термической обработки величина зерна в стали составляла 0,3—0,8 мм. Для того чтобы температура перехода стали Х17 после воздействия термического цикла сварки находилась ниже нуля градусов, что необходимо д.пя падежной службы, содержание углерода и азота в сумме пе должно превышать 0,01—0,015 /о. Увеличение содержашгя ( +N) до 0,02% н более приводит к повышению переходной температуры до 100° С и выше.  [c.33]

Решающее влияние на свариваемость стали оказывает углерод. С увеличением содержания углерода в стали (свыше 0,3%) повышается самозакаливаемость переходной зоны в основном металле сталь становится более хрупкой. Влияние углерода значительно меньше при электродуговой сварке, чем при газовой.  [c.295]

Практически минимальное количество углерода в прокатной -стали и проволоке, изготовляемых для промышлениого применения, составляет 0,06%. Введение в такую сталь добавочных количеств химически стабилизирующих элементов титана или ниобия делает ее, как правило, не склонной к межкристаллитной коррозии без специальной термообработки. Такие стали могут применяться для изготовления сварной химической аппаратуры и деталей, работающих в интервале 500—700°. Терми-черкая обработка таких изделий, как правило, необязательна. Содержание углерода в проволоке для сварки ответственных деталей и особенно деталей, работающих в тяжелых условиях коррозии, как это имеет место в химической промышленности, не должно превышать 0,06%. Чем ниже содержание углерода в присадочном материале, тем выше качество сварного шва. В те с случаях, когда хромо-никелевые стали применяются в условиях умеренного воздействия коррозионных агентов, содержание углерода не оказывает большого влияния на коррозионную стойкость в том случае, если он находится в твердом растворе и для изготовления деталей может применяться сталь с содержанием углерода 0,07—0,12%.  [c.11]

Итак, стабилизированные стали должны содержать достаточное по отношению к углероду количество карбидобразующего элемента (достаточная стабилизация), который должен связать углерод в специальные карбиды и этим сделать невозможным выпадение карбидов хрома. В этом случае стали ведут себя приблизительно так, как если бы они почти совсем не содержали углерода. Напомним (см. 4.1), что стабилизация стали 1Х18Н9 титаном и ниобием в соответствии с эмпирическими формулами, приведенными выше (табл. 18), в большинстве случаев полностью подавляет склонность к межкристаллитной коррозии того типа, который проявляется у нестабилизированных сталей после сварки (см., например, рис. 31). Изделия, изготовленные с применением сварки из правильно стабилизированных сталей [226, 244], оказываются и без последующего отжига стойкими к межкристаллитной коррозии в зонах, подвергшихся термическому влиянию. Однако, при более длительных выдержках в условиях критических температур и стабилизированные таким образом стали становятся также в различной мере склонными к межкристаллитной коррозии в зависимости от степени стабилизации. Действительно, ранее было установлено, что растворяющий отжиг при температуре 1150° С уже может оказать влияние на стойкость стали с более низким содержанием титана и ниобия. При этой температуре еще не может произойти значительный рост зерна, поэтому увеличение количества карбидов хрома, выделяющихся по границам зерен в зоне термического влияния сварного соединения, нельзя в этом случае объяснить только уменьшением всей поверхности границ за счет роста зерна. Точно так же гипотеза о значительной поверхностной активности углерода по отношению к хромоникелевому аусте-ниту, основанная на современных представлениях о роли поверхностных слоев кристаллов твердого раствора при термообработке поликристаллических веществ и очень хорошо описывающая распределение углерода в аустените, не объясняет процесс освобождения связанного в специальном карбиде углерода во время растворяющего отжига при высоких температурах. Чтобы в поверхностных слоях аустенитных зерен могла повыситься концентрация углерода, прежде всего должна произойти диссоциация присутствующих в структуре карбидов титана, ниобия или тантала, а для этого углерод и карбидобразующий элемент должны перейти в твердый раствор. Реально ли это с термохимической точки зрения, можно вывести  [c.128]

mash-xxl.info

Влияние различных элементов на свариваемость стали |

Углерод (С) – одна из важнейших примесей, определяющая прочность, пластичность, закаливаемость и др. характеристики стали. Содержание углерода в сталях до 0,25% не снижает свариваемости. Более высокое содержание «С» приводит к образованию закалочных структур в металле зоны термического влияния (далее по тексту – ЗТВ) и появлению трещин.

 Сера (S) и фосфор (P) – вредные примеси. Повышенное содержание «S» приводит к образованию горячих трещин – красноломкость, а «P» вызывает хладноломкость. Поэтому содержание «S» и «P»  в низкоуглеродистых сталях ограничивают до 0,4÷0,5%.

 Кремний (Si) присутствует в сталях как примесь в к-ве до 0,3% в качестве раскислителя. При таком содержании «Si» свариваемость сталей не ухудшается. В качестве легирующего элемента при содержании «Si» – до 0,8÷1,0% (особенно до 1,5%) возможно образование тугоплавких оксидов «Si», ухудшающих свариваемость.

 Марганец (Mn) при содержании в стали до 1,0% – процесс сварки не затруднен. При сварке сталей с содержанием «Mn» в к-ве 1,8÷2,5% возможно появление закалочных структур и  трещин в металле ЗТВ.

 Хром (Cr) в низкоуглеродистых сталях ограничивается как примесь в количестве до 0,3%. В низколегированных сталях возможно содержание хрома в пределах 0,7÷3,5%. В легированных сталях его содержание колеблется от 12% до 18%, а в высоколегированных сталях достигает 35%. При сварке хром образует карбиды, ухудшающие коррозионную стойкость стали. Хром способствует образованию тугоплавких оксидов, затрудняющих процесс сварки.

 Никель (Ni) аналогично хрому содержится в низкоуглеродистых сталях в количестве до 0,3%. В низколегированных сталях его содержание возрастает до 5%, а в высоколегированных – до 35%. В сплавах на никелевой основе его содержание является пре­валирующим. Никель увеличивает прочностные и пластические свойства стали, оказывает положительное влияние на свариваемость.

 Ванадий (V) в легированных сталях содержится в количестве 0,2÷0,8%. Он повышает вязкость и пластичность стали, улучшает ее структуру, способствует повышению прокаливаемости.

 Молибден (Мо) в сталях ограничивается 0,8%. При таком содержании он положительно влияет на прочностные показатели сталей и измельчает ее структуру. Однако при сварке он выгорает и способствует образованию трещин в наплавленном металле.

 Титан и ниобии (Ti и Nb) в коррозионностойких и жаропрочных сталях содержатся в количестве до 1%. Они снижают чувствительность стали к межкристаллитной коррозии, вместе с тем ниобий в сталях типа 18-8 способствует образованию горячих трещин.

 Медь (Си) содержится в сталях как примесь (в количестве до 0,3% включительно), как добавка в низколегированных сталях (0,15 до 0,5%) и как легирующий элемент (до 0,8÷1%). Она повышает коррозионные свойства стали, не ухудшая свариваемости.

ndt-welding.com

Сварка углеродистых сталей - Cварочные работы

Сварка углеродистых сталей

К углеродистым конструкционным сталям относятся стали, содержащие 0,1 — 0,7 % углерода, который является основным легирующим элементом в сталях этой группы и определяет их механические свойства. Повышение содержания углерода усложняет технологию сварки и получение качественных сварных соединений. В сварочном производстве в зависимости от содержания углерода углеродистые конструкционные стали условно разделяют на три группы: низко-, средне- и высокоуглеродистые. Технология сварки сталей этих групп различна.

Большинство сварных конструкций в настоящее время изготовляют из низкоуглеродистых сталей, содержащих углерода до 0,25%.

Низкоуглеродистые стали относятся к хорошо сваривающимся металлам практически всеми видами и способами сварки плавлением.

Технологию сварки для этих сталей выбирают из условий соблюдения комплекса требований, обеспечивающих прежде всего равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном соединении. Сварное соединение должно быть стойким против перехода в хрупкое состояние, а деформация конструкции должна быть в пределах, не отражающихся на ее работоспособности. Металл шва при сварке низкоуглеродистой стали незначительно отличается по своему составу от основного металла — снижается содержание углерода и повышается содержание марганца и кремния. Однако обеспечение равнопрочности при дуговой сварке не вызывает затруднений. Это достигается за счет увеличения скорости охлаждения и легирования марганцем и кремнием через сварочные материалы. Влияние скорости охлаждения в значительной степени проявляется при сварке однослойных швов, а также в последних слоях многослойного шва. Механические свойства металла околошовной зоны подвергаются некоторым изменениям по сравнению со свойствами основного металла — при всех видах дуговой сварки это незначительное упрочнение металла в зоне перегрева. При сварке стареющих (например, кипящих и полуспокойных) низкоуглеродистых сталей на участке рекристаллизации околошовной зоны возможно снижение ударной вязкости металла. Металл околошовной зоны охрупчи-вается более интенсивно при многослойной сварке по сравнению с однослойной. Сварные конструкции из низкоуглеродистой стали иногда подвергают термической обработке. Однако у конструкций с угловыми однослойными швами и многослойными, наложенными с перерывом, все виды термической обработки, кроме закалки, приводят к снижению прочности и повышению пластичности металла шва. Швы, выполненные всеми видами и способами сварки плавлением, имеют вполне удовлетворительную стойкость против образования кристаллизационных трещин из-за низкого содержания углерода. Однако при сварке стали с верхним пределом содержания углерода могут появиться кристаллизационные трещины, прежде всего в угловых швах, первом слое многослойных стыковых швов, односторонних швах с полным проваром кромок и первом слое стыкового шва, сваренного с обязательным зазором.

Большое распространение при изготовлении конструкций из низкоуглеродистых сталей получила ручная сварка покрытыми электродами. В зависимости от требований к сварной конструкции и прочностных показателей свариваемой стали выбирают тип электрода. В последние годы широкое применение получили электроды типа Э46Т с рутиловым покрытием. Для особо ответственных конструкций используют электроды с фтористо-кальциевым и фтористо-кальциеворутиловым покрытием типа Э42А, обеспечивающие повышенную стойкость металла шва против кристаллизационных трещин и более высокие пластические свойства. Применяются также высокопроизводительные электроды с железным порошком в покрытии и электроды для сварки с глубоким проплавлением. Род и полярность тока выбирают в зависимости от особенностей электродного покрытия.

Несмотря на хорошую свариваемость низкоуглеродистых сталей иногда для предотвращения_ образования закалочных структур в околошовной зоне‘следует предусматривать специальные технологические меры. Поэтому при сварке первого слоя многослойного шва и угловых швов на толстом металле рекомендуется предварительный подогрев его до 120— 150 °С, чем обеспечивается стойкость металла против появления кристаллизационных трещин. Для уменьшения скорости охлаждения перед исправлением дефектных участков необходимо выполнять местный подогрев до 150° С, что будет препятствовать понижению пластических свойств наплавленного металла.

Низкоуглеродистые стали газовой сваркой сваривают без особых затруднений нормальным пламенем и, как правило, без флюса. Мощность пламени при левом способе выбирают из расчета расхода 100— 130 дм3/ч ацетилена на 1 мм толщины металла, а при правом — 120—150 дм3/ч. Высококвалифицированные сварщики работают с пламенем большой мощности — 150—200 дм 3/ч ацетилена, используя при этом присадочную проволоку большего, чем при обычной сварке диаметра. Для получения равнопрочного с основным металлом соединения при сварке ответственных конструкций следует применять кремнемарганцовистую сварочную проволоку. Конец проволоки должен быть погружен в ванну расплавленного металла. В процессе сварки нельзя отклонять сварочное пламя от ванны расплавленного металла, так как это может привести к окислению металла шва кислородом. Для уплотнения и повышения пластичности наплавленного металла осуществляют проковку и последующую термообработку.

Отличие среднеуглеродистых сталей от низкоуглеродистых в основном состоит в различном содержании углерода. Среднеуглеродистые стали содержат 0,26 — 0,45% углерода. Повышенное содержание углерода создает дополнительные трудности при сварке конструкций из этих сталей. К ним относится низкая стойкость против кристаллизационных трещин, возможность образования малопластичных закалочных структур и трещин в околошовной зоне и трудность обеспечения рав-нопрочности металла шва с основным металлом. Повышение стойкости металла шва против кристаллизационных трещин достигается снижением количества углерода в металле шва путем применения электродных стержней и присадочной проволоки с пониженным содержанием углерода, а также уменьшения доли основного металла в металле шва, что достигается сваркой с разделкой кромок на режимах, обеспечивающих минимальное проплавление основного металла и максимальное значение коэффициента формы шва. Этому же способствуют электроды с большим коэффициентом наплавки. Для преодоления трудностей, возникающих при сварке изделий из среднеуглеродистых сталей, выполняют предварительный и сопутствующий подогрев, модифицирование металла шва и двухдуговую сварку в раздельные ванны. Ручную сварку среднеуглеродистых сталей ведут электродами с фтористо-кальциевым покрытием марок УОНИ-13/55 и УОНИ-13/45, которые обеспечивают достаточную прочность и высокую стойкость металла шва против образования кристаллизационных трещин. Если к сварному соединению предъявляются требования высокой пластичности, необходимо подвергнуть его последующей термообработке. При сварке следует избегать наложения широких валиков, сварку выполняют короткой дугой, небольшими валиками. Поперечные движения электрода нужно заменять продольными, кратеры заваривать или выводить на технологические пластины, так как в них могут образовываться трещины.

Газовую сварку среднеуглеродистых сталей ведут нормальным или слегка науглероживающим пламенем мощностью 75— 100 дм3/ч ацетилена на 1 мм толщины металла только левым способом, уменьшающим перегрев металла. Для изделий толщиной свыше 3 мм рекомендуется общий подогрев до 250 — 350 °С или мест-ный —до 600—650 °С. Для сталей с содержанием углерода на верхнем пределе целесообразно применять специальные флюсы. Для улучшения свойств металла используют проковку и термическую обработку.

К высокоуглеродистым сталям относят стали с содержанием углерода в пределах 0,46 — 0,75%. Эти стали, как правило, не пригодны для изготовления сварных конструкций. Однако необходимость сварки возникает при ремонтных работах. Сварка производится с предварительным, а иногда с сопутствующим подогревом и последующей термообработкой. При температуре ниже 5 °С и на сквозняках сварку выполнять нельзя. Остальные технологические приемы такие же, как и для сварки среднеуглеродистых сталей. Газовую сварку высокоуглеродистых сталей осуществляют нормальным или слегка науглероживающим пламенем мощностью 75 — 90 дм3/ч ацетилена на 1 мм толщины металла с подогревом до 250—300 °С. Применяют левый способ сварки, позволяющий уменьшить время перегрева и время пребывания металла сварочной ванны в расплавленном состоянии. Используются флюсы того же состава, что и для среднеуглеродистых сталей. После сварки шов проковывается с последующей нормализацией или отпуском.

В последние годы находят применение термоупроч-ненные углеродистые стали. Стали повышенной прочности позволяют уменьшить толщину изделий. Режимы и техника сварки термоупрочненных сталей такие же, как и для обычной углеродистой стали того же состава. Сварочные материалы выбирают с учетом обеспечения равнопрочности металла шва с основным металлом. Главным затруднением при сварке является разупрочнение участка околошовной зоны, подвергающегося нагреву до 400 — 700 °С. Поэтому для термоупрочненной стали рекомендуются маломощные режимы сварки, а также способы сварки с минимальным теплоотводом в основной металл.

Применяют также стали с защитными покрытиями. Наибольшее распространение получила оцинкованная сталь при изготовлении различных конструкций и сани-тарно-технических трубопроводов. При сварке оцинкованной стали в случае попадания цинка в’ сварочную ванну создаются условия для появления пор и трещин Поэтому цинковое покрытие необходимо удалять со свариваемых кромок. Учитывая, что следы цинка на кромках остаются, следует принимать дополнительные меры по предупреждению образования дефектов: по сравнению со сваркой обычной стали зазор увеличивают в 1,5 раза, а скорость сварки уменьшают на 10 — 20%, электрод вдоль шва перемещают с продольными колебаниями. При ручной сварке оцинкованной стали лучшие результаты получают при работе электродами с рути-ловым покрытием, обеспечивающими минимальное содержание кремния в металле шва. Но можно применять и другие электроды. В связи с тем, что пары цинка чрезвычайно токсичны, сварку оцинкованной стали можно производить при наличии сильной местной вентиляции. После окончания сварочных работ необходимо нанести защитный слой на поверхность шва и восстановить его на участке околошовной зоны.

Читать далее:Сварочные флюсыСварочные электродыОбщие сведения о сварке арматурыПротивопожарные мероприятия при сваркеБезопасность труда при сварке технологических трубопроводовБезопасность труда при сварке строительных металлических и железобетонных конструкцийЗащита от поражения электрическим током при сваркеТехника безопасности и производственная санитария при сваркеУправление качеством сваркиСтатистический метод контроля

stroy-server.ru

СВАРИВАЕМОСТЬ СТАЛЕЙ

СВАРКА, РЕЗКА И ПАЙКА МЕТАЛЛОВ

Малоуглеродистые стали вообще отличаются хорошей сварива­емостью. Снижать свариваемость могут вредные примеси, если со­держание их превышает норму.

Вредные примеси могут ухудшать свариваемость даже и при среднем содержании, не выходящем из нормы, если они образуют местные скопления, например, вследствие ликвации. Вредными для сварки элементами в малоуглеродистой стали могут являться углерод, фосфор и сера, причём последняя особенно склонна к лик­вации с образованием местных скоплений.

Отрицательное влияние на свариваемость может оказывать так­же засорённость металла газами и неметаллическими включениями. Засорённость металла вредными примесями зависит от способа его производства и о ней частично можно судить по маркировке метал­ла. Сталь повышенного качества сваривается лучше, чем сталь обычного качества соответствующей марки; сталь мартеновская лучше, чем сталь бессемеровская, а сталь мартеновская спокойная лучше, чем кипящая. При изготовлении ответственных сварных из­делий указанные отличия в свариваемости малоуглеродистых ста­лей должны обязательно приниматься во внимание и учитываться при выборе марки основного металла.

Углеродистые стали, содержащие углерода более 0,25%, обла­дают пониженной свариваемостью по сравнению с малоуглероди­стыми, причём свариваемость постепенно снижается по мере повы­шения содержания углерода. Стали с повышенным содержанием углерода легко закаливаются, что ведёт к получению твёрдых хруп­ких закалочных структур в зоне сварки и может сопровождаться образованием трещин. С повышением содержания углерода растёт склонность металла к перегреву в зоне сварки. Увеличенное содер­жание углерода усиливает процесс его выгорания с образо­ванием газообразной окиси углерода, вызывающей вскипание ванны и могущей приводить к значительной пористости наплавлен­ного металла.

При содержании углерода свыше 0,4—0,5% сварка стали ста­новится одной из сложнейших задач сварочной техники. Углероди­стые стали вообще обладают пониженной свариваемостью и, если это возможно, рекомендуется заменять их низколегированными кон­струкционными сталями, которые дают ту же прочность при значи­тельно меньшем содержании углерода за счёт других легирующих элементов. При сварке углеродистых сталей плавлением обычно не придерживаются соответствия химического состава присадочного и основного металла, стремясь получить наплавленный металл рав­нопрочным с основным за счёт легирования марганцем, кремнием и др. при сниженном содержании углерода.

Сварка углеродистых сталей часто выполняется с предваритель­ным подогревом и последующей термообработкой, причём, если возможно, во многих случаях стремятся совместить термообработку с процессом сварки, например при газовой сварке мелких деталей, при газопрессовой сварке, при точечной и стыковой контактной сварке и т. д.

Большинство низколегированных конструкционных сталей обла­дает удовлетворительной свариваемостью. Ввиду возросшего зна­чения сварки новые марки конструкционных низколегированных сталей, как правило, выпускаются с удовлетворительной свари­ваемостью. Если же испытания пробных партий стали показывают недостаточно удовлетворительную свариваемость, то обычно для улучшения свариваемости изготовители корректируют состав стали. В некоторых случаях требуется небольшой предварительный подо­грев стали до 100—200°, реже приходится прибегать к последующей термообработке. Для предварительной грубой качественной оценки свариваемости низколегированных сталей иногда прибегают к под­счёту эквивалента углерода по химическому составу стали. Под­счёт ведётся по следующей эмпирической формуле:

TOC o "1-5" h z ^ п, Мп, Сг, Ni і V

Эквивалент углерода = С -|----------------- 1---------------------- - ,

6 3 15 5

где символы элементов означают процентное содержание их в стали. При эквиваленте углерода меньше 0,45 свариваемость стали может считаться удовлетворительной, если же эквивалент углерода больше 0,45, то необходимо принимать специальные меры, как, например, предварительный подогрев и последующая термо­обработка. Следует отметить, что метод оценки свариваемости по эквиваленту углерода является весьма ориентировочным и далеко не всегда даёт верные результаты.

По структуре низколегированные стали относятся обычно к пер­литному классу. Большое разнообразие химического состава низко­легированных сталей делает весьма трудным получение совпадания химического состава наплавленного и основного металла при сварке плавлением, что требует весьма большого, трудно осуще­ствимого разнообразия присадочных материалов. Поэтому, за исключением некоторых особых случаев, где требуется соответствие химического состава основного и наплавленного металла (например, получение устойчивости против коррозии, крипоустойчивости и т. п.), обычно ограничиваются получением необходимых механи­ческих свойств наплавленного металла, не принимая во внимание его химический состав. Это даёт возможность при сварке многих сортов сталей пользоваться немногими видами присадочных ма­териалов, что является существенным практическим преимуществом. Например, электродами УОНИ-13 успешно свариваются десятки марок углеродистых и низколегированных сталей. В сварных кон­струкциях низколегированные стали обычно предпочитают углеро­дистым той же прочности. Для установления необходимости неболь­шого предварительного подогрева и последующего отпуска часто принимают во внимание максимальную твёрдость металла зоны влияния. Если твёрдость не превышает 200—250 Н в то подогрев и отпуск не требуются, при твёрдости 250—30G Нв применение по­догрева или отпуска является желательным, при твёрдости свыше 300—350 Нв — обязательным.

Из высоколегированных сталей обладают хорошей свари­ваемостью и находят широкое применение в сварных конструкциях стали аустенитного класса. Наиболее широко применяются хромо­никелевые аустенитные стали, например общеизвестная нержавею­щая сталь 18/8 (18% хрома и 8% никеля). Хромоникелевые аусте­нитные стали применяются как нержавеющие, а при более высоком легировании, например при содержании 25% хрома и 20% никеля, они являются и жароупорными сталями. Содержание углерода в хромоникелевых аустенитных сталях должно быть минимальным, не превышающим 0,10—0,15% в различных марках, иначе возможно выпадение карбидов хрома, резко снижающее ценные свойства аустенитной стали.

Для частей машин, работающих на истирание, например для щёк камнедробилок, а также для рельсовых крестовин, применяется обычно в форме отливок сравнительно дешёвая марганцовистая аустенитная сталь, содержащая 13—14% марганца и 1,0—1,3% углерода.

Сварка аустенитных сталей должна, как правило, сохранить структуру аустенита в сварном соединении и связанные с аустени - том ценные свойства: высокое сопротивление коррозии, высокую пластичность и т. д. Распад аустенита происходит с выпадением карбидов, образуемых освобождающимся из раствора избыточным углеродом. Распаду аустенита способствуют нагрев металла до температур ниже точки аустенитного превращения, уменьшение со­держания аустенитообразующих элементов, повышение содержания углерода в малоуглеродистых аустенитах, загрязнение металла при­месями и т. д. Поэтому, при сварке аустенитных сталей следует сокращать до минимума продолжительность нагрева и количество вводимого тепла и применять возможно более интенсивный отвод тепла от места сварки посредством медных подкладок, водяного охлаждения и т. д.

Аустенитная сталь, идущая для изготовления сварных изделий, должна быть высшего качества с минимальным количеством за­грязнений. Поскольку распад хромоникелевого аустенита вызы­вается образованием и выпадением карбидов хрома, стойкость аустенита может быть повышена введением в металл карбидообра- зователей более сильных, чем хром. Для этой цели оказались при­годными титан Ті и ниобий Nb, в особенности первый элемент, к тому же не являющийся дефицитным. Титан весьма прочно свя­зывает освобождающийся углерод, не позволяя образовываться карбидам хрома, и тем самым предотвращает распад аустенита. Для сварки рекомендуется применять аустенитную сталь с неболь­шим содержанием титана. Хорошей свариваемостью отличается, на­пример, нержавеющая аустенитная хромоникелевая сталь ЭЯ-1Т типа 18/8 с небольшим количеством титана (не свыше 0,8%). Более строгие требования, естественно, предъявляются к присадочному металлу, который должен быть аустенитным, желательно с неко­торым избытком легирующих элементов, с учётом возможного их выгорания при сварке и со стабилизирующими добавками — тита­ном или ниобием. ГОСТ 2246-51 предусматривает аустенитную при­садочную проволоку для сварки нержавеющих и жароупорных ста­лей. Аустенитная присадочная проволока иногда применяется и для сварки сталей мартенситного класса.

Дефицитность и высокая стоимость аустенитной хромоникеле­вой проволоки заставляют проводить изыскания над получением более дешёвых заменителей. В лабораторных условиях были полу­чены удовлетворительные результаты с электродами, имеющими стержень из малоуглеродистой проволоки марки Св1А по ГОСТ 2246-51, с обмазкой, содержащей хром и никель, а также при авто­матической сварке проволокой марки Св1А под керамическим не - плавленным флюсом, содержащим хром и никель. При сварке этими электродами в обоих случаях отпадает лишь необходимость в де­фицитной аустенитной проволоке, но остаётся расход дефицитного металлического никеля и металлического хрома или высокопро­центного малоуглеродистого феррохрома, вводимых в соответствую­щих количествах в обмазку или во флюс.

Точечная контактная сварка нержавеющих сталей ведётся на очень жёстких режимах, время прохождения тока часто снижается до х/г и }4 периода переменного тока, т. е. до 0,01 и 0,005 сек.

Стали мартенситного класса, отличающиеся высокой прочностью и твёрдостью, находят применение как инструментальные стали, как броневые и т. д. Сварка их связана с известными труд­ностями.

Стали легко и глубоко закаливаются, поэтому после сварки обычно необходима последующая термообработка, заключающаяся в низком или высоком отпуске. Часто необходим также предвари­тельный подогрев изделия. Существенное значение может иметь предшествующая термообработка изделия перед сваркой, жела­тельно по возможности равномерное мелкодисперсное распреде­ление структурных составляющих. При сварке плавлением часто отказываются от соответствия наплавленного и основного металла не только по химическому составу, но и по механическим свойствам, стремясь, в первую очередь, обеспечить повышенную пластичность наплавленного металла и устранить образование в нём трещин. Для этой цели при дуговой сварке довольно часто применяют, на­пример, аустенитные электроды.

Стали карбидного класса применяются главным образом как инструментальные, и на практике чаще приходится иметь дело не со сваркой, а с наплавкой этих сталей при изготовлении и восста­новлении металлорежущего инструмента, штампов и т. п. Предва­рительный подогрев и последующая термообработка для этих ста­лей по большей части обязательны.

Для дуговой сварки и наплавки применяются электродные стержни легированных сталей, близких по свойствам к основному металлу, а также и стержни малоуглеродистой стали с легирую­щими покрытиями, содержащими соответствующие ферросплавы. По окончании сварки или наплавки обычно производится термо­обработка, состоящая из закалки и отжига.

Стали ферритного класса отличаются тем, что в них совершенно подавлено или ослаблено образование аустенита при высоких тем­пературах за счёт введения больших количеств стабилизаторов феррита.

Существенное практическое значение имеют хромистые феррит - ные стали с содержанием хрома от 16 до 30% и углерода не свыше 0,1—0,2%, отличающиеся кислотоупорностью и исключительной жаростойкостью. Стали могут быть сварены с присадочным метал­лом того же состава или аустенитным. Обязателен предваритель­ный подогрев, по окончании сварки производится продолжительный отжиг в течение нескольких часов, за которым следует быстрое охлаждение.

Не очень большую по объёму применения, но важную по зна­чению отрасль сварочной техники образуют методы огневой резки металла под водой. Возможности выполнения человеком под водой различных технических работ пока весьма …

Обычная кислородная резка, когда режущая струя направлена приблизительно нормально к поверхности металла, прорезает всю толщину металла и имеет целью отделить или отрезать часть ме­талла, может быть названа разделительной резкой. Возможен …

Для кислородных резаков обычного устройства можно считать нормальными толщины разрезаемой стали до 200—300 мм, как не вызывающие особых затруднений и не требующие особых специ­альных приёмов резки. Толщины свыше указанных считаются …

msd.com.ua