Поделки своими руками для авто, дачи и дома. Схема зарядного устройства
Схема простого зарядного устройства для АКБ
Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.
Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.
Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.
Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.
Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.
Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.
Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.
Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора, например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.
В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.
Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.
переделал на транзистор
Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером. Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.
Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.
Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.
Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.
По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.
Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).
Плата в формате .lay; скачать…
Автор; АКА КАСЬЯН
xn--100--j4dau4ec0ao.xn--p1ai
Зарядные устройства | Сборник принципиальных электрических схем зарядных устройств для аккумуляторов
Сегодня в интернете можно найти множество различных схем и конструкций зарядок для АКБ, которые отличаются как по цене изготовления, так и принципу действия. Прежде чем остановиться на какой либо из них, нужно понять, что хорошие зарядные устройства должны обеспечить оптимальный режим заряда от его начала до его завершения. Они должны поддерживать и автоматически изменять в зависимости от стадии заряда величины напряжения и тока. Существует три метода заряда. Методом постоянства тока — когда на протяжении заряда поддерживается заданная величина тока. Методом постоянства напряжения — когда поддерживается неизменным заданное напряжение. И комбинированный способ заряда аккумулятора — сначала идет заряд при стабилизации тока, а заканчивается при стабилизации напряжения.
Любой аккумулятор, будь то батарея сотового телефона или ноутбука, заряжается от источника постоянного тока только тогда, когда напряжение источника больше напряжения АКБ. Но в следствии особенностей аккумуляторов их приходится заряжать по различным схемам. Например, при заряде автомобильного аккумулятора с фиксированным значением тока его можно зарядить полностью. Только следует учесть, что на завершающей стадии зарядки аккумулятора сильно повысится температура электролита, что уменьшит срок службы аккумулятора. Если аккумулятор заряжать при постоянном значении напряжения, то не возникнет необходимости контроля зарядки, электролит не перегреется и не закипит. Однако в этом случае аккумулятор не зарядится полностью из-за большого падения тока в конце зарядки. По этим причинам наиболее продвинутые зарядные устройства используют комбинированную схему заряда. На нашем сайте вы найдёте сотни различных схем зарядных устройств на любой вкус — от сложных микроконтроллерных, с импульсными трансформаторами — до простейших, с блоком питания на сетевых трансформаторах, выпрямителе и диодном мосте.
Но не забываем и про технику безопасности при работе с аккумуляторными батареями! Как свинцовые, так и литий-ионные АКБ в случае неправильной эксплуатации могут нагреться и даже взорваться. Происходит это из-за довольно высоких токов заряда, которые в случае с автоаккумуляторами могут достигать 10 ампер. Чтобы этого не произошло, в первые минуты после включения ЗУ присутствуйте рядом и наблюдайте за ростом зарядного тока, и не оставляйте его на зарядке долгое время без присмотра.
serp1.ru
СХЕМА ЗАРЯДНОГО УСТРОЙСТВА
СХЕМА ЗАРЯДНОГО УСТРОЙСТВА
Представляю известную и проверенную схему зарядного устройства практически для всех типов аккумуляторов. Не смотря на то, что в продаже имеется множество крутых и серьёзных устройств, с зарядкой аккумуляторов токами различной формы и амплитуды, системами контроля и компенсации зарядного процесса, долгие эксперименты с различными схемами зарядных устройств и алгоритмами привели к простому выводу, что всё намного проще. Зарядный ток 10% от ёмкости АКБ подходит для любых видов аккумуляторов - хоть NiCd, хоть Li-Ion, хоть Pb. А чтоб полностью зарядить аккумулятор, ему надо дать время зарядки около 10 - 12 часов. Значит когда нужно зарядить какой - нибудь пальчиковый никель кадмиевый аккумулятор на 2500 мА, нужно выбрать ток 2500/10 = 250 мА и заряжать им в течении десяти часов, проще говоря оставить зарядку на ночь. Просто? Просто. И не надо ничего усложнять.
Схема зарядного устройства:
В этой схеме ЗУ относительная стабильность будет сохранятся и при изменении тока нагрузки или изменении питающего напряжения. Ток заряда определяется сопротивлением резистора R1. Различные значения этого сопротивления соответствуют току заряда от 0.01 до 1,5 A. Расчет зарядного тока – ток равен 1,2В деленное на сопротивление резистора R1 I=U/R или для расчёта резистора: R=U/I. Например для зарядного тока 250 мА (те же пальчиковые аккумуляторы), выбираем резистор R1 = 1,2В/0,25А = 4,8 Ома. А мощность этого резистора равна ток умножить на напряжение: P=UхI; Р=1,2В х 0,25А = 0,3 ватта. Для запаса берём минимум двухкратный запас по мощности.
Детали зарядного устройства. Предохранители F1 и F2 защищают ЗУ от различных проблемных ситуаций. Емкость конденсатора С1 выбирается в пределах 1000 - 2000 мкФ. Выпрямительный диодный мост можно взять готовый, а можно составить из 4-х диодов на ток 1 - 5 А и напряжение от 50 В. Микросхему - стабилизатор LM317 можно заменить на любые аналоги, в том числе и советские, типа КРЕН5, КР142ЕН12 и так далее. Только выбирайте их согласно паспортным данным по заданному току (обычно 1-1,5А).
Но так как цена LM317 (LM117) очень низкая, а параметры заметно лучше, чем у отечественных аналогов, рекомендую использовать именно её. Эта микросхема представляет собой регулируемый стабилизатор напряжения с выходным напряжением в пределах от 1,2 до 36 В при выходном токе 1,5 А. Она снабжена защитой от короткого замыкания, выходной ток не зависит от температуры, максимальная нестабильность выходного напряжения 0,3%, подавление пульсаций - 80 дБ. Если нужно получить больший выходной ток ЗУ, лучше использовать другие микросхемы: LM150 - на ток до 3А; LM138, LM338 - на ток до 5А.
Главное достоинство этой схемы зарядного устройства - оно не боится коротких замыканий; в не зависимости от числа элементов в аккумуляторе и типа – можно заряжать и кислотный герметичный, и литий ионный, и щелочной, и никель кадмиевый. Для удобства и универсальности можно добавить в схему зарядного устройства переключатель тока для каждого вида заряжаемых аккумуляторов. Вообще, за долгие годы радиолюбительства, эту схему лично повторял десятки раз для разных целей - и всегда с успехом.
Естественно, при выборе питающего трансформатора нужно учесть, что максимальное напряжение заряжаемого аккумулятора должно быть меньше, чем напряжение питания зарядки минимум на 3 вольта, иначе и заряд то идти не будет. Микросхему нужно установить на алюминиевый радиатор размерами с пачку сигарет, или если ток больше 1 ампера - соответственно тоже большего размера.
ФОРУМ по зарядным устройствам.
Поделитесь полезной информацией с друзьями:
elwo.ru
"Юному радиолюбителю" | Неуклонная тенденция развития портативной электроники практически ежедневно заставляет рядового пользователя сталкиваться с зарядкой аккумуляторов своих мобильных устройств. Будь вы владельцем мобильного телефона, планшета, ноутбука или даже автомобиля, так или иначе вам неоднократно придётся столкнуться с зарядкой аккумуляторов этих устройств. На сегодняшний день рынок выбора зарядных устройств настолько обширен и велик, что в этом многообразии довольно тяжело сделать грамотный и правильный выбор зарядного устройства, подходящего к типу используемого аккумулятора. К тому же, сегодня существуют более 20-и типов аккумуляторов с различным химическим составом и основой. Каждый из них имеет свою специфику работы заряда и разряда. В силу экономической выгоды современное производство в этой сфере сейчас сконцентрировано преимущественно на выпуске свинцово-кислотных (гелевых) (Pb), никель – металл - гидридных (NiMH), никель – кадмиевых (NiCd) аккумуляторов и аккумуляторов на основе лития – литий-ионных (Li-ion) и литий-полимерных (Li-polymer). Последние из указанных, кстати, активно используются в питании портативных мобильных устройств. Главным образом литиевые аккумуляторы заслужили популярность за счёт применения относительно недорогих химических компонентов, большого количества циклов перезаряда (до 1000), высокой удельной энергии, низкой степени саморазряда, а так же способности удерживать ёмкость при отрицательных значениях температуры. Электрическая схема зарядного устройства литиевых аккумуляторов, применяемых в мобильных гаджетах сводится к обеспечению их в процессе заряда постоянным напряжением, превышающим на 10 – 15 % номинальное. К примеру, если для питания мобильного телефона используется литий-ионная батарея на 3,7 В., то для её заряда необходим стабилизированный источник питания достаточной мощности для поддержания напряжения заряда не выше 4,2В – 5В. Именно поэтому большинство портативных зарядных устройств, идущих в комплекте с устройством, выпускают на номинальное напряжение 5В, обусловленное максимальным напряжением питания процессора и заряда батареи с учётом встроенного стабилизатора. Конечно, не стоит забывать и о контроллере заряда, который берёт на себя основной алгоритм заряда батареи, а так же опрос её состояния. Современные литиевые аккумуляторы, выпускаемые для мобильных устройств с малыми токами потребления, уже идут со встроенным контроллером. Контроллер выполняет функцию ограничения тока заряда в зависимости от текущей ёмкости аккумулятора, отключает подачу напряжения устройству в случае критического разряда батареи, защищает батарею в случае короткого замыкания нагрузки (литиевые батареи очень чувствительны к большому току нагрузки и имеют свойство сильно нагреваться и даже взрываться). С целью унификации и взаимозаменяемости литий-ионных аккумуляторов ещё в 1997 году компании Duracell и Intel разработали управляющую шину опроса состояния контроллера, его работы и заряда с названием SMBus. Под эту шину были написаны драйвера и протоколы. Современные контроллеры и сейчас используют основы алгоритма заряда, прописанные этим протоколом. В плане технической реализации существует множество микросхем, способных реализовать контроль заряда литиевых аккумуляторов. Среди них выделяется серия MCP738xx, MAX1555 от MAXIM, STBC08 или STC4054 с уже встроенным защитным n-канальным MOSFET транзистором, резистором определения тока заряда и диапазоном напряжения питания контроллера от 4,25 до 6,5 Вольт. При этом у последних микросхем от STMicroelectronics значение напряжения заряда аккумулятора 4,2 В. имеет разброс всего +/- 1%, а зарядный ток может достигать 800 мА, что позволит реализовать зарядку аккумуляторов ёмкостью до 5000 мА/ч. Рассматривая алгоритм заряда литий-ионных аккумуляторов стоит сказать, что это один из немногих типов, предусматривающих паспортную возможность зарядки током до 1С (100% ёмкости аккумулятора). Таким образом, аккумулятор ёмкостью в 3000 ма/ч может заряжаться током до 3А. Однако, частая зарядка большим «ударным» током хоть и существенно сократит её время, но в то же время довольно быстро снизит ёмкость аккумулятора и приведёт его в негодность. Из опыта проектирования электрических схем зарядных устройств скажем, что оптимальным значением зарядки литий-инного (полимерного) аккумулятора является значение 0,4С – 0,5С от его ёмкости. Значение тока в 1С допускается лишь в момент начального заряда батареи, когда ёмкость аккумулятора достигает приблизительно 70% своей максимальной величины. Примером может стать работа зарядки смартфона или планшета, когда первоначальное восстановление ёмкости происходит за короткое время, а оставшиеся проценты набираются медленно. На практике довольно часто случается эффект глубокого разряда литиевого аккумулятора, когда его напряжение опускается ниже 5% его ёмкости. В этом случае контроллер не в состоянии обеспечить достаточный пусковой ток для набора начальной ёмкости заряда. (Именно поэтому не рекомендуется разряжать такие аккумуляторы ниже 10%). Для решения таких ситуаций необходимо аккуратно разобрать аккумулятор и отключить встроенный контроллер заряда. Далее необходимо к выводам аккумулятора подсоединить внешний источник заряда, способный выдать ток не менее 0,4С ёмкости аккумулятора и напряжение не выше 4,3В (для аккумуляторов на 3,7В.). Электрическая схема зарядного устройства для начальной стадии зарядки таких аккумуляторов может примениться из примера ниже. Данная схема состоит из стабилизатора тока в 1А. (задаётся резистором R5) на параметрическом стабилизаторе LM317D2T и импульсном регуляторе напряжения LM2576S-adj. Напряжение стабилизации, определяется обратной связью на 4-ю ногу стабилизатора напряжения, то есть соотношением сопротивлений R6 и R7, которыми на холостом ходу выставляется максимальное напряжение зарядки аккумулятора. Трансформатор должен на вторичной обмотке выдавать 4,2 – 5,2 В переменного напряжения. Тогда после стабилизации мы получим 4,2 – 5В постоянного напряжения, достаточного для заряда вышеупомянутого аккумулятора. Никель – металл - гидридные аккумуляторы (NiMH) чаще всего можно встретить в исполнении корпусов стандартных батареек – это формфактор ААА (R03), АА (R6), D, С, 6F22 9В. Электрическая схема зарядного устройства для NiMH и NiCd аккумуляторов должна в себя включать нижеперечисленные функциональные возможности, связанные со спецификой алгоритма заряда этого типа аккумуляторов. У различных аккумуляторов (даже с одинаковыми параметрами) со временем меняются химические и емкостные характеристики. В итоге возникает необходимость организовывать алгоритм заряда каждого экземпляра индивидуально, поскольку в процессе зарядки (особенно большими токами, что допускают никелевые аккумуляторы) избыточный перезаряд влияет на быстрый перегрев аккумулятора. Температура в процессе заряда выше 50 градусов из-за химически необратимых процессов распада никеля полностью погубит аккумулятор. Таким образом, электрическая схема зарядного устройства должна иметь функцию контроля температуры аккумулятора. Для увеличения срока службы и количества циклов перезаряда никелевого аккумулятора желательно каждую его банку разрядить до напряжения не ниже 0,9В. током порядка 0,3С от его ёмкости. К примеру, аккумулятор с 2500 – 2700 мА/ч. разрядить на активную нагрузку током в 1А. Так же зарядное устройство должно поддерживать зарядку с «тренировкой», когда в течении нескольких часов происходит циклический разряд до 0,9В с последующим зарядом током 0,3 – 0,4С. Исходя из практики таким образом можно оживить до 30% убитых никелевых аккумуляторов, причём никель-кадмиевые аккумуляторы «реанимации» поддаются гораздо охотнее. По времени заряда электрические схемы зарядных устройств могут делиться на «ускоренные» (ток заряда до 0,7С с временем полного заряда 2 – 2,5ч.), «средней длительности» (0,3 – 0,4С – заряд за 5 – 6ч.) и «классические» (ток 0,1С – время заряда 12 – 15ч.). Конструируя зарядное устройство для NiMH или NiCd аккумулятора, так же можно воспользоваться общепринятой формулой расчёта времени заряда в часах: T = (E/I) ∙ 1.5 где Е – ёмкость аккумулятора, мА/ч., I – ток заряда, мА, 1,5 – коэффициент для компенсации КПД во момент зарядки. К примеру, время заряда аккумулятора ёмкостью 1200 мА/ч. током 120 мА (0,1С) будет: (1200/120)*1,5 = 15 часов. Из опыта эксплуатации зарядных устройств для никелевых аккумуляторов стоит отметить, что чем ниже зарядный ток, тем больше циклов перезаряда перенесёт элемент. Паспортные циклы, как правило, производитель указывает при зарядке аккумулятора током 0,1С с наиболее длительным временем заряда. Степень заряженности банок зарядное устройство может определять через измерение внутреннего сопротивления за счёт разницы падения напряжения в момент заряда и разряда определённым током (метод ∆U). Итак, учитывая всё вышеизложенное, одним из наиболее простых решений для самостоятельной сборки электрической схемы зарядного устройства и в то же время обладающей высокой эффективностью является схема Виталия Спорыша, описание которой без труда можно найти в сети. Основными преимуществами данной схемы является возможность зарядки как одного, так и двух последовательно соединённых аккумуляторов, термоконтроль заряда цифровым термометром DS18B20, контроль и измерение тока в процессе заряда и разряда, автоотключение по завершению зарядки, возможность зарядки аккумулятора в «ускоренном» режиме. Кроме того, с помощью специально написанного программного обеспечения и дополнительной платы на микросхеме - преобразователе TTL уровней MAX232 возможен вариант контроля зарядки на ПК и дальнейшей её визуализации в виде графика. К недостаткам стоит отнести необходимость наличия независимого двухуровневого питания. Аккумуляторы на основе свинца (Pb) довольно часто можно встретить в устройствах с большим потреблением тока: автомобилях, электромобилях, бесперебойниках, в качестве источников питания различного электроинструмента. Нет смысла перечислять их достоинства и недостатки, которые можно разыскать на многих сайтах на просторах сети. В процессе реализации электрической схемы зарядного устройства для таких аккумуляторов следует различать два режима зарядки: буферный и циклический. Буферный режим зарядки предусматривает одновременное подключение к аккумулятору и зарядного устройства, и нагрузки. Такое подключение можно наблюдать в блоках бесперебойного питания, автомобилях, ветряных и солнечных энергосистемах. При этом, во время подзаряда устройство является ограничителем тока, а когда аккумулятор набирает свою ёмкость – переходит в режим ограничения напряжения для компенсации саморазряда. В этом режиме аккумулятор выступает в роли суперконденсатора. Циклический режим предусматривает отключение зарядного устройства по завершению зарядки и его повторное подключение в случае разряда батареи. Схемных решений по зарядке данных аккумуляторов в Интернете достаточно много, поэтому рассмотрим некоторые из них. Для начинающего радиолюбителя для реализации простого зарядного устройства «на коленках» отлично подойдёт электрическая схема зарядного устройства на микросхеме L200C от STMicroelectronics. Микросхема представляет собой АНАЛОГОВЫЙ регулятор тока с возможностью стабилизации напряжения. Из всех преимуществ, которые имеет эта микросхема – это простота схемотехники. Пожалуй, на этом все плюсы и заканчиваются. Согласно даташиту на эту микросхему, максимальный ток заряда может достигать 2А, что теоретически позволит зарядить аккумулятор ёмкостью до 20 А/ч напряжением (регулируемым) от 8 до 18В. Однако, как оказалось на практике, минусов у этой микросхемы гораздо больше, чем плюсов. Уже при зарядке 12 амперного cвинцово-гелевого SLA аккумулятора током 1,2А микросхема требует радиатор площадью не менее 600 кв. мм. Хорошо подходит радиатор с вентилятором от старого процессора. Согласно документации к микросхеме, к ней можно прикладывать напряжение до 40В. На самом деле, если подать по входу напряжение более 33В. – микросхема сгорает. Данное зарядное требует довольно мощный источник питания, способный выдать ток не менее 2А. Согласно приведённой схеме вторичная обмотка трансформатора должна выдавать не более 15 – 17В. переменного напряжения. Значение выходного напряжения, при котором зарядное устройство определяет, что аккумулятор набрал свою ёмкость, определяется значением Uref на 4-й ножке микросхемы и задаётся резистивным делителем R7 и R1. Сопротивления R2 – R6 создают обратную связь, определяя граничное значение зарядного тока аккумулятора. Резистор R2 в то же время определяет его минимальное значение. При реализации устройства не стоит пренебрегать значением мощности сопротивлений обратной связи и лучше применять такие номиналы, какие указаны в схеме. Для реализации переключения зарядного тока лучшим вариантом станет применение релейного переключателя, к которому подключаются сопротивления R3 – R6. От использования низкоомного реостата лучше отказаться. Данное зарядное устройство способно заряжать аккумуляторы на свинцовой основе ёмкостью до 15 А/ч. при условии хорошего охлаждения микросхемы. Существенно уменьшить габариты зарядки свинцовых аккумуляторов небольшой ёмкости (до 20 А/ч.) поможет электрическая схема зарядного устройства на импульсном 3А. стабилизаторе тока с регулировкой напряжения LM2576-ADJ. Для зарядки свинцово-кислотных или гелевых аккумуляторных батарей ёмкостью до 80А/ч. (к примеру, автомобильных). Отлично подойдёт импульсная электрическая схема зарядного устройства универсального типа представленная ниже. Схема была успешно реализована автором этой статьи в корпусе от компьютерного блока питания ATX. В основе её элементной базы лежат радиоэлементы, большей частью взятые из разобранного компьютерного блока питания. Зарядное устройство работает как стабилизатор тока до 8А. с регулируемым напряжением отсечки заряда. Переменное сопротивление R5 устанавливает значение максимального тока заряда, а резистор R31 устанавливает его граничное напряжение. В качестве датчика тока используется шунт на R33. Реле K1 необходимо для защиты устройства от изменения полярности подключения к клеммам аккумулятора. Импульсные трансформаторы T1 и Т21 в готовом виде были так же взяты из компьютерного блока питания. Работает электрическая схема зарядного устройства следующим образом: 1. включаем зарядное устройство с отключённой батареей (клеммы зарядки откинуты) 2. выставляем переменным сопротивлением R31(на фото верхнее) напряжение заряда. Для свинцового 12В. аккумулятора оно не должно превышать 13,8 – 14,0 В. 3. При правильном подключении зарядных клемм слышим, как щёлкает реле, и на нижнем индикаторе видим значение тока заряда, которое выставляем нижним переменным сопротивлением (R5 по схеме). 4. Алгоритм заряда спроектирован таким образом, что устройство заряжает аккумулятор постоянным заданным током. По мере накопления ёмкости значение зарядного тока стремится к минимальному значению, а «дозаряд» происходит за счёт выставленного ранее напряжения. Полностью посаженый свинцовый аккумулятор не включит реле, как и собственно саму зарядку. Поэтому важно предусмотреть принудительную кнопку подачи мгновенного напряжения от внутреннего источника питания зарядного устройства на управляющую обмотку реле К1. При этом следует помнить, что в момент нажатой кнопки защита от переполюсовки будет отключена, поэтому нужно перед принудительным пуском обратить особое внимание на правильность подключения клемм зарядного устройства к аккумулятору. Как вариант, возможен запуск зарядки от заряженного аккумулятора, а уж потом перебрасываем клеммы зарядки на требуемый посаженный аккумулятор. Разработчика схемы можно найти под ником Falconist на различных радиоэлектронных форумах. Для реализации индикатора напряжения и тока была применена схема на pic-контроллере PIC16F690 и «супердоступных деталях», прошивку и описание работы которой можно найти в сети. Данная электрическая схема зарядного устройства, конечно же, не претендует на звание «эталонной», но она в полной мере способна заменить дорогостоящие зарядные устройства промышленного производства, а по функциональности может даже значительно превзойти многие из них. В окончании стоит сказать, что последняя схема универсального зарядного устройства рассчитана главным образом на человека, подготовленного в радиоконструировании. Если же вы только начинаете, то лучше в мощном зарядном устройстве применить гораздо более простые схемы на обычном мощном трансформаторе, тиристоре и системе его управления на нескольких транзисторах. Пример электрической схемы такого зарядного устройства приведён на фото ниже. Смотрите также схемы: Электрическая схема блока питания Электронный термометр Электрическая печи Стабилизатор напряжения Электрический счетчик |
elektronika-muk.ru
Принципиальная электрическая схема зарядного устройства для автомобиля
Соблюдение режима эксплуатации аккумуляторной батареи автомобиля и её обслуживание, является залогом долгой работы аккумулятора. А для этого иногда требуется производить полную зарядку аккумулятора, поэтому в этой статье под названием самодельные схемы для заряжания аккумуляторной батареи автомобиля мы рассмотрим самые распространенные схемы таких зарядных устройств, которые под силу изготовить радиолюбителям самостоятельно в домашних условиях.
Буквально пару слов повторюсь, потому как у нас на сайте уже достаточно статей о зарядке АКБ автомобиля, но, тем не менее, повторю формулу вычисления тока заряда для аккумулятора
I-0.1/Q
- где I – это ток заряда, который нам нужно найти измеряется в Амперах
- 0.1 – это число, выведенное опытным путем за года практики производства и заряда аккумуляторных батарей, так же зачастую вместо 0.1 говорят заряжать 10% от мощности аккумулятора
- Q – Емкость аккумулятора, определенная производителем
Пример нужно найти сколько ампер выставить на заряднике для подзарядки 60 Амперного АКБ
I=0.1/60 = 6А или ищем 10% от числа 60 = 60А*10%/100=6А по первой и второй формуле сила тока которую нужно выставить на зарядном устройстве при подключенном к нему 60 Амперном аккумуляторе равняется 6 Амперам, а напряжение выставляем больше 12 вольт в идеале 14-16 вольт. На хендай санта фе например стоит АКБ 74Ампера высчитываем 10% от емкости и получаем 7.4 Ампера зарядного тока.
Время заряда аккумулятора Q/силу тока которую вы выставили на заряднике в нашем случае = 60/6 = 10часов, за 10 часов при 6Амперах и 14 вольтах ваш АКБ зарядится на 100%, но есть небольшие нюансы о которых лучше прочитать в этой статье на нашем сайте про АКБ.
Классическая схема самодельного зарядного
Вот обычная классическая схема, понижающий трансформатор, диодный мост, реостат, и предохранитель. Как рассчитать и правильно намотать трансформатор читайте тут
Вторая схема зарядного устройства для автомобиля своими руками с использованием сглаживающего конденсатора, а также он гасит избыточное напряжение, как правило, ставят несколько конденсаторов, которые своим реактивным сопротивлением собственно и убирают избыточное напряжение
Схема ниже уже предполагает регулировку силы тока от 1 до 15 ампер, а конденсаторы С1-С4 позволяют задавать напряжение зарядки
Вот ниже еще несколько схем самодельных зарядных устройств для АКБ автомобиля
Список радиоэлементов:
- R1 = 4,7 кОм
- R2 -10K подстроечный
- T1 — BC547B
- Реле — 12В, 400 Ом, SPDT
- TR1 — напряжение вторичной обмотки 14. Вольт, ток 1/10 от емкости аккумулятора
- Диодный мост — на ток, равный номинальному току трансформатора
- Диоды D2 и D3 = 1N4007
- C1 = 100uF/25V
Вот еще одна схема зарядника АКБ
Принцип работы: ток заряда регулируется транзистором VT3 в зависимости от напряжения АКБ, Резистор R3 ограничивает м зарядный ток, лучше ставить мощный не менее 10 Вт.При полном заряде аккумулятора тока заряда снизится до нуля
Зарядное устройство для аккумулятора из подручных средств
Вот ещё одна схемка, которую я бы не рекомендовал, но это только мое личное мнение
В этой статье простые схемы зарядок для аккумулятора транспортного средства мы привели несколько наиболее распространенных схем для восстановления работоспособности аккумулятора. Если вы хорошо разбираетесь в схемотехнике и электронике для вас не составит труда собрать такие устройства. Посмотрите видео ниже как автовладельцы мастерят самодельные зарядки для АКБ.
santavod.ru
Электрическая схема зарядного устройства для аккумулятора
Пульт управления
В интернет сети можно найти довольно большое количество различных примеров ЗУ, для каждого из них дается электрическая схема зарядного устройства для автомобильного аккумулятора.
Среди многочисленных вариантов привлекают внимание импульсные ИИП, их выходная мощность может составлять до 150 Вт, этого вполне достаточно не только для обыкновенной зарядки аккумулятора, но и для его «прикуривания» во время запуска двигателя в сложных зимних условиях.
Конечно, кратковременный ток запуска в этих режимах превышает возможности зарядного устройства, но и такая добавка мощности может значительно помочь не вполне зараженному аккумулятору автомобиля.
Предлагаемая схема импульсного зарядного устройства для автомобильного аккумулятора не является догмой, в нее можно вносить некоторые изменения с целью улучшения выходных показателей.
Сборка схемы
Представленная схема позволяет самостоятельно собрать зарядное устройство, которое при показателях напряжения в пределах 12÷14 В может давать до 120 А постоянного тока.
По принципиальным характеристикам у схемы нет никаких сложностей, задающий генератор IR2153, он легко справляется с управлением двумя ключами.
Схема имеет надежные многоканальные полевые резисторы высокой мощности IRF740. Можно поставить и другие типы резисторов, но это отрицательно скажется на выходной мощности зарядного устройства.
Описание схемы блока зарядного устройства для автомобильного аккумулятора
Электрическая схема зарядного устройства для автомобильного аккумулятора представляет хорошо известный полумост. Напряжение от сети поступает после сетевого фильтра на выпрямитель, для ограничения величины пускового тока вмонтированы термисторы.
Сборка устройства
Сглаживание пусковых токов и понижение уровня помех выполняется дросселем и пленочными конденсаторами. Мостовой выпрямитель можно ставить покупной или собрать собственный из четырех диодов соответствующих параметров, но во всех случаях нужно следить, чтобы он выдерживал минимум 400 В, а лучше и все 1000 В, при этом сила тока должна быть в пределах 6÷10 А. Можно брать готовые диодные сборки от блока питания компьютеров.
Напряжение на электролитах полумоста должно составлять до 250 В, при больших показателях нужно соответственно увеличивать емкость конденсаторов. Кстати, эти конденсаторы также можно брать из бока питания компьютера.
Используется кольцевой трансформатор, но можно его заменить самодельным на феррите Ш-образного вида. Силовые транзисторы должны иметь эффективные теплоотводы, лучше их сделать отдельными.
Схема 1
В крайнем случае, допускается монтаж на общий теплоотвод. Правильно собранная схема импульсного зарядного устройства для автомобильного аккумулятора должна гарантировать отсутствие малейшего нагрева транзисторов без нагрузки, если их температура повышена – следует искать ошибки монтажа или несправные составные элементы.
Для диодных выпрямителей взяты импульсные выпрямители с большими значениями токов, в комплекте с ними нужно ставить мощные диодные шоттки. После моста можно поставить электролитический конденсатор.
В данном блоке не предусмотрена защита от сверхвысоких токов короткого замыкания на выходе. Это значит, что ни в коем случае не следует проверять работоспособность включенного зарядного устройства путем кратковременного замыкания проводов.
Если от такой привычки сложно избавиться, то в обязательном порядке следует установить дополнительную схему защиты, ее можно устанавливать отдельно или вмонтировать в общий корпус.
Другие полезные советы по эксплуатации и ремонту автомобиля читайте в специальном разделе нашего сайта.
Трансформатор
Похожие статьи
www.em-grand.ru
Схема универсального зарядного устройства
Вот еще одна универсальная схема зарядного устройства, которое предназначено для заряда любых малогабаритных типов аккумуляторов, и самое главное — эта схема соответствует всем требованиям самого производителя. Для разных типов аккумуляторов достаточно лишь изменить силу тока заряда. Ток заряда должен быть 0,1 от емкости АКБ, тогда при такой зарядке аккумулятора хватит примерно на 800 циклов заряда/разряда, в зависимости от типа АКБ. Время зарядки учитывая ток 0,1 от емкости аккумулятора составит 10-12 часов. Принципиальная схема приведена ниже:
Данная схема рассчитана для заряда аккумулятора 12 вольт и емкостью 4 Ампера. Подаем напряжение 220 вольт. Ток проходит через светодиод, который паралельно включен к источнику питания через токоограничивающий резистор R3 и далее ток идет на первичную обмотку трансформатора (трансформатор берем мощностью 15-20 ват). Обмоткой создается магнитное поле и магнитное поле пронизывает витки вторичной обмотки и начинает протекать переменный ток меньшего напряжения, т.к. трансформатор понижающий. Далее переменный ток идет на диодный мост, который преобразует переменный ток в постоянный. Диодный мост собирается из 4-ёх диодов рассчитанных на напряжение 30 вольт и силу тока в 1 А. Элементы С1 и С2 служат в качестве снижения пульсации тока. Резистор R1 подбираем сами, отрегулировав нужный ток зарядки для вашего аккумулятора. Далее идет диод Д2, сигнализирующий наличие тока заряда. Резистор R2 играет роль ограничения тока для светодиода Д2.
Далее видим микросхему, которая играет роль стабилизации тока. На 3 ногу подаем напряжение, со второй ноги выход, а первой ноги регулируем через переменный резистор 47 кОм требуемое нам напряжение. Светодиод Д4 показывает нам о наличии заряда аккумулятора, а резистор R6 служит ограничителем тока для светодиода Д4. Диод Д1 служит в качестве защиты от переполюсовки.
serp1.ru