Новые технологии в сварке. Технологии сварки


Новые технологии сварки металлов

Современная цивилизация многим обязана процессу сварки. Без сварочных элементов мы не получили бы транспорта, огромных строений, технологических конструкций, мобильных телефонов и пр. Несмотря на то, что этот физический процесс применяется много столетий, он не останавливает своего прогресса. Учёные многих стран продолжают исследовать и совершенствовать сварочные механизмы, применять новые приёмы и производить революционные открытия в этой сфере.

Новые технологии в сварке

Новые технологии позволяют добиться более совершенного результата с использованием минимальных ресурсов. Разработки, появляющиеся ежегодно, делают возможным сварку тех материалов, которые раньше оставались за границами данной технологии.

Основные инновационные направления

Все разработки в данной области направлены на то, чтобы улучшить основные показатели процесса с наименьшими затратами:

  • снижение коррозии и коробления металлов во время эксплуатации;
  • повышение скорости выполнения сварочного процесса;
  • облегчение зачистки мест соединения или обеспечение отсутствия такой необходимости;
  • минимальный расход материалов;
  • облегчённое и упрощенное управление процессом;
  • способность соединения самых тонких листов металла различных марок.

Портативные аппараты

Такие типы сварочных аппаратов позволили вывести сварку на новый – бытовой — уровень. Если до изобретения портативных устройств подобные работы выполнялись преимущественно профессионалами с высокой квалификацией, то портативная техника позволила применять их и дома.

Современные сварочные аппараты

Современные сварочные аппараты

Во-первых, такие аппараты очень лёгкие по весу, в связи с чем их удобно транспортировать. Во-вторых, производители снабдили их полным готовым для использования комплектом, не забыв о системе подачи электродов (проволоки весом до 10 кг).

Главным усовершенствованием можно считать то, что в аппарат вмонтирована система цифрового управления. На дисплее каждый может указать основные параметры сварки: диаметр закладываемой проволоки, тип газа и т.д. На основании введённых данных портативный аппарат самостоятельно настраивается и выполняет сварку на достаточном для непроизводственных сварных швов уровне.

Усовершенствованные горелки

Самым примитивным звеном во время сварки считается газовая горелка, но даже небольшие изменения этого элемента позволили значительно улучшить качество выполняемой работы. Современные конструкции горелок производят не только из новых материалов, но имеют другой диаметр выходного отверстия, которое способно работать с нестандартными температурами и создавать необходимое давление.

Предлагаемые учёными газовые горелки стали безредукторными и высокодинамичными, при помощи их даже во время продолжительного процесса на самых высоких температурах можно получить идеально ровное пламя, в котором не будут появляться факелы, вспышки и хлопки. Из-за таких инноваций работа сварщика не требует частых остановок, что позволяет выполнить больший объём работ за то же самое время.

Газовая горелка

Разработаны агрегаты с многочисленными соплами, которые используются для соединения труб большого диаметра. Ширина пламени при использовании линейных горелок может достигать нескольких метров. Эта технология часто применяется для соединения деталей под водой или в воздухе, где существует острая необходимость в резком сокращении времени выполнения работ.

Гибридная лазерная технология

Такой способ был разработан для автомобилестроения, но нашёл применение и в других промышленных отраслях. Гибридный лазер используют для получения качественных швов при соединении тугоплавких сортов стали при совмещении с диоксидом углерода. Это позволяет получить идеальные сварные швы при точном управлении мощности лазерного излучения в пределах 1,5 – 4,0 кВт.

Гибридная лазерная сварка

Ещё одной особенностью, присущей гибридной лазерной технологии, является высочайшая скорость плавящегося электрода и выполняемых работ – от 40 до 450 м/час. С такими же показателями можно обрабатывать тончайшие листы, изготовленные из автомобильной стали, что стало причиной финансовой поддержки и усовершенствования этой разработки ведущими автомобильными корпорациями.

Двухдуговая сварка

Такая методика была разработана для крупногабаритных конструкций, в изготовлении которых задействованы толстые листы закаливающейся стали таких марок как 30ХГСА. Способ основан на том, что при двухдуговом воздействии одномоментно применяются проволоки двух разных типов, имеющие в составе легирующие (сверхпрочные) компоненты. Диаметр таких электродов – 5 мм.

Для обеспечения устойчивого горения дуги при двухдуговой сварке необходим керамический флюс, созданный на основе керамики марки АНК-51А. Именно с керамическим флюсом данный способ показывает самый высокий результат и формирование идеальной сварной поверхности.

Щадящая методика

Для определённых работ была разработана новая щадящая технология, которая очень высокорезультативна, но отличается низкой себестоимостью. Во время процесса применяют специальные смеси защитных газов: диоксид углерода в соединении с аргоном или смесь аргона, диоксида углерода и кислорода. По сравнению с традиционным применением обособленного диоксида углерода, получаемый шов выходит более гладким и безупречным.

Сварка аргоном

Ещё одним позитивным моментом является значительное удешевление сварочного процесса: на равный объём выполненных соединений расходуется меньшее количество проволочных электродов. Экономия составляет около 20%, что в промышленных масштабах представляет собой значительную сумму. Кроме того, во время сварочного процесса переход к деталям, поддающимся сварке, становится очень постепенным и плавным. Профессиональные сварщики, которые были задействованы в начальных тестах щадящей методики, подчеркнули, что разбрызгивание электродных металлов при многокомпонентной смеси газов значительно уменьшается.

Двухкомпонентная методика

Этот новый метод, который получил широкое распространение в развитых странах за короткий промежуток времени, обязан своим появлением запуску новых скоростных составов на железных дорогах. Двухкомпонентная технология является модифицированным вариантом литьевого способа. Она разрешила достичь результатов, которые раньше считались взаимоисключающими: обеспечить высочайшую пластичность шовного соединения, не ухудшив при этом износоустойчивость металла в месте сварного шва.

Сварные работы на Ж/Д путях

Технически двухкомпонентная методика выполняется сложно, поскольку требует особой подготовки: на месте проведения работ должна быть расплавленная сталь, которая аккуратно помещается в жидком виде в зазор между рельсами. Для того, чтобы придать соединению внушительную вязкость, применяется плавка с низколегированными компонентами. Износостойкость увеличивается посредством использования керамических флюсов, которые позволяют после заполнения сварного стыка вывести легирующие добавки из процесса. Керамика разрушается под действием высокой температуры, а добавки, укрепляющие соединение, застывают на поверхности, обеспечивая длительную эксплуатацию без трещин и деформаций.

Орбитальная аргонодуговая технология

Эта технология нашла применение в аэрокосмической отрасли, в автомобилестроении и полупроводниковой промышленности. Такая методика является высокоспецифичной и применяется для объектов со сложным конструктивным контуром. Впервые она была разработана 50 лет назад, но её значительно усовершенствовали, применив вольфрамовый электрод.

Орбитальная аргонодуговая сварка

Главным преимуществом орбитальной аргонодуговой вольфрамовой сварки является то, что расход активирующего флюса при таком методе рекордно низкий: на 1 м сварного шва расходуется всего 1г флюса. Это делает возможным проводить процесс при пониженном токе, что уменьшает не только объём, но и вес сварочной ванны. При этом качество соединения регулируется в режиме реального времени посредством корректировки давления дуги.

Такой методикой успешно пользуются при необходимости соединить жаропрочные, высокопрочные сплавы, углеродистые стали, титан, медь и никель.

Технология СМТ

Эта методика основана на холодном переносе металлов. Когда говорят о холодном переносе, в виду не имеют реально низкую температуру, просто она значительно ниже, чем при классических вариантах.

Главное отличие заключается в том, что заготовки и зона будущего шва не прогреваются до максимальных значений, поэтому тепловложение в области обработки в разы уменьшается. Из-за того, что металл точечно не перегревается, не происходит сильная деформация. Работа электрода основана на контролируемом коротком замыкании, которое прекращается быстрым отодвиганием проволоки из зоны действия разряда и быстрого повторного его возвращения (до 70 раз в секунду).

Сварочный шов по технологии СМТ

Применение СМТ-сварки осуществляется через автоматизированные системы, которые дают очень однородные и качественные швы на местах соединения оцинкованных или стальных листов с алюминиевыми сплавами.

В данном случае сварка ведётся короткозамкнутой дугой с систематическими прерываниями. В результате такой системы шов атакуется горячими и холодными импульсами, что позволяет снизить давление в районе вхождения дуги. По такому же принципу снижается разбрызгивание при переносе металлов.

Таким образом, при помощи СМТ-сварки был достигнут стандарт, который ранее считался только теоретическим. Это стало возможным из-за контроля короткого замыкания и полного отсутствия разноса брызг, что резко снижает необходимость послесварочной механической обработки.

Плазменная сварка

Этот метод делает возможной сварку металлов разной толщины, начиная от самых тонких листов и заканчивая глубиной шва до 20 см. Плазменная технология позволяет одновременно с выполнением сварочных работ производить резку.

В основе плазменного метода находится ионизированный газ, который полностью заполняет пространство между двумя электродами. Именно через этот газ проходит электрическая дуга определённой мощности, обеспечивая очень сильный эффект.

Плазменная сварка

Использование плазменного генератора представляет собой сложный процесс, требующий высокого профессионализма и профессиональных навыков, поэтому использовать его в бытовых целях не получится. Внутри генератора возникает многофункциональная сварочная система, которая может использоваться в узкоспециализированных сферах.

Технология компьютерного моделирования

Самое современное направление в сварочных технологиях по праву отводится компьютерному моделированию. Оно одинаково целесообразно для выполнения соединений самых мелких деталей со сложными контурами и для масштабных работ, где необходимо управление огромными площадями и множеством сварочных аппаратов.

Если раньше объёмные работы выполнялись при использовании многих аппаратов или целым сварочным комплексом, то компьютерное моделирование позволяет иметь одну функциональную единицу с разветвлённой периферией, оснащённой множеством горелок и насадок.

Полная автоматизация позволяет внедрять принципиально новые способы сварочных работ, которые недоступны для большинства сварщиков. Сами сварщики в таком случае функционально превращаются в операторов, задающих компьютеру все необходимые параметры, на основании которых программа задаёт оптимальные значения и контролирует процесс. Такой подход значительно повышает результат выполняемой работы.

Компьютерное моделирование сварочного процесса

Компьютерное моделирование сварочного процесса

Новые технологии вывели сварку на совершенно новый уровень, который позволяет выполнять сварочный процесс в рекордные сроки с минимальными трудозатратами и максимальным результатом. В то же время, прогресс не стоит на месте, поэтому вполне возможно, что в ближайшем будущем появятся системы, которые будут работать автономно, практически без участия людей. Разработки подобных проектов уже ведутся, и в том случае, если испытания увенчаются успехом, скоро человечество сможет получить новые масштабы и концепции сварочных производств.

qwizz.ru

Современные технологии сварки и их применение Статья www.Equipnet.ru

Автор: Александр Ситников, специально для Equipnet.ru Фотографии с сайта aztpa.ru, tehsovet.ru

История неразъемного соединения металлов путём их нагревания и динамического воздействия друг на друга, начинается с бронзового века. Такой процесс сейчас мы называем сваркой, которая стала обретать современные черты в конце XVIII века благодаря итальянцу А. Вольту, впервые получившему вольтов столб. Впоследствии он был усовершенствован русским физиком В.В.Петровым в электрическую дугу. Но только 80 лет спустя  Н. Н. Бенардосу удалось воплотить их достижения в дуговую сварку угольным электродом. С этого момента начинается неразрывная череда изобретений новых методов.

В наше время сварку классифицируют по категориям: термическая (сварочная дуга, электродуговая, газопламенная, электрошлаковая, плазменная, электронно-лучевая, лазерная), термомеханическая (точечная, стыковая, рельефная, диффузионная, кузнечная, сварка высокочастотными токами, трением) и механическая (сварка взрывом и ультразвуком).

Качество швов при гибридной лазерной сварке конструкционных сталей объемных сотовых панелей в СО2 с параллельным использованием  плавящего электрода несоизмеримо выше, чем в традиционных технологиях; существенной является и скорость сварки – 40...450 м/ч при управляемом лазерном излучении от 1,5 до 4,0 квт. Безусловным преимуществом данного метода можно считать режим высокоскоростной сварки тонких листов стали, что представляет интерес для автомобильной промышленности.

Для высокопроизводительной сварки крупногабаритных конструкций из толстолистовой (d> 30мм) закаливающейся стали 30ХГСА был разработан метод двухдуговой сварки, который основан на совместном использовании двух высоколегированных сварочных проволок различного состава диаметром 5 мм. Сварка производится под керамическим флюсом марки АНК-51А. Как показали результаты испытаний, этот метод резко улучшает качество сварного соединения.

Еще одним стимулом разработки и внедрения новых методов сварки является сварочное соединение композиционных материалов, основанием которых служит металлическая матрица с волокнистым или дисперсным упрочнением. Но особую сложность представляет собой  сварочное соединение последних со сталью или титаном. В этом плане интересен метод  сварки-пайки, при котором на поверхность деталей наносят промежуточный сплав, а сварка производится сжатием под напряжением на точечных, рельефных или конденсаторных машинах. Для сварки тонколистовых композитов на алюминиевой подошве с волокнистым упрочнением или дисперсно-упрочненных частиц SiC, Аl2O3 и С используют аргоно-дуговую сварку с промежуточными вставками.

Прочность сварочных нахлесточных швов составляет 70%  от прочности композита, но учитывая высокую прочность самого композита (до 1500 МПа) в сравнении с высокопрочными алюминиевыми сплавами (>700 МПа), следует отметить, что метод сварки-пайки позволяет создавать надежные и, что важно, легкие конструкции. Это делает его незаменимым в авиационной и аэрокосмической промышленности.

Достаточно сложным материалом для качественной и герметичной сварки является конструкционный чугун. Современные технологии его сварки базируются на применении специальной тонкой проволоки марки ПАHЧ-11из сплава на никелевой основе, главным достижением которых является низкое тепловыделение. Особенно это актуально для тонкостенных деталей, учитывая хрупкость чугуна, как материала. Поскольку сварочный шов, получаемый при этой технологии, представляет собой высокопластичный железоникелевый сплав, то разрушение конструкции, как правило, происходит по чугуну, а не по шву, что характерно для традиционной дуговой сварки. Подобный метод позволяет изготавливать чугунные конструкции ответственного назначения.

Другим металлом представляющим сложность при сварочных работах, безусловно, является титан, его альфа и альфа+бета сплавы. Очевидным прорывом в этой области стала разработка метода  магнитоуправляемой электрошлаковой  сварки (МЭС), позволяющего соединять крупногабаритные детали при изготовлении центропланов самолетов, кареток крыла, траверс шасси, шпангоутов и силовых переборок морских судов. Такая сварка осуществляется в шлаковых и металлических ваннах током до 12000А и напряжением на электродах до 36 В и обеспечивает высокое качество швов при толщине свариваемых кромок 30-600 мм, благодаря очистке метала шва от примесей и газовых пор. Это позволяет использовать технику, изготовленную с помощью метода МЭС, в условиях гигантских динамических и статических нагрузок.

Большое будущее инженеры сулят программированию сварки и, прежде всего, тепловложению. Этот метод базируется на электроннолучевом принципе, успешно применяется для соединения высокопрочных алюминиевых сплавов. Программирование тепловложения производится в контуре разверстки пучка, что позволяет контролировать и управлять проплавление, форму, исключить образование трещин и пор в металле шва. Очевидным преимуществом является гарантированный шов при соединении алюминиевых сплавов в ответственных высоконагруженных машинах и узлах, что особенно важно в самолётостроении.

К новым технологиям, которые являются предметом настоящего обзора EquipNet.ru,  следует отнести инновационный  метод орбитальной аргонодуговой сварки вольфрамовым электродом (ОАСВЭ) сложных деталей, к примеру, неповоротных стыков труб диаметром от 20 до 1440 мм.  Активирующий флюс наносится 1 г/м шва, что способствует решению ряда важных технологических задач: во-первых, сварка ведётся пониженным током, позволяющим уменьшить объем и вес сварочной ванны; во-вторых, качественный шов в любом пространственном положении обеспечивается регулированием давления дуги на жидкий металл; в-третьих, сварка может быть автоматизирована без разделки кромки. Этот метод (ОАСВЭ) эффективен для стыков труб с толщиной до 6мм, свыше – его использует в комбинации с другими методами и только для формирования корневого шва.

Интересным представляются щадящие технологии сварки в смесях защитных газов Ar+CO2 и Ar+O2+CO2. Шов получается более качественным в сравнении со сваркой в СО2, расход проволоки на 20 % экономичнее стандартных схем, переход к свариваемым деталям становится плавным, при этом резко снижается набрызгивание электродного металла.

Среди новых методов, получивших широкое практическое распространение, является метод двухкомпонентной сварки для бесстыкового железнодорожного пути, основанный на литьевом способе сварки, что позволяет решать достаточно противоречивые задачи, т.е. обеспечить заданную пластичность металла шва при необходимой износостойкости.

Подобная технология сложна, поскольку требует использования расплавленной стали, которая заливается в зазор рельсового стыка. Для обеспечения  высокой вязкости используется низколегированная плавка, а вот для придания требуемой износостойкости применяют специальные керамические накладки, отделяющие легирующие добавки от основного металла. После заполнения стыка расплавленной сталью, керамические накладки разрушаются, и легирующие добавки расплавляются в верхней части стыка, придавая головке шва повышенную износостойкость.

Идея обуздать «короткое замыкание» и запрячь его для сварки не нова, однако только специалистам компанией «Линкольн Электрик» удалось ее реализовать на практике. Этот метод сварки корней шва получил название «Перенос силами Поверхностного Натяжения» (STT) и базируется на высокоскоростных инверторных источников тока и микропроцессорах. В процессе сварки переменным, но управляемым является и ток, и напряжение, что существенно расширяет возможности данного метода.

Современная наука является многогранной, позволяет использовать преимущества нанотехнологий, поэтому будущее сварки  видится в совершенствовании схем компьютерного управления  и внедрении новых сварочных материалов. 

www.equipnet.ru

Сварка

Сварка – технологический процесс соединения металлов, сплавов, полимеров и других материалов путем установления связей между атомами или молекулами свариваемых деталей с помощью введения тепловой и (или) механической энергии.

Сварку используют на заводах при сборке корпусов автомобилей, на строительных площадках при монтаже металлоконструкций и во многих других областях производства. Сварной шов имеет ряд преимуществ перед другими видами соединений.

сварка

Вот некоторые из них: высокая прочность, близкая к прочности основного металла, меньшая стоимость по сравнению с использованием стандартных крепежных элементов, герметичность, малый вес, неразъемность (монолитность) сварного соединения, возможность сваривать изделия сложной и нестандартной формы, высокая производительность процесса. Производительность сильно возрастает при использовании механизированных способов, например автоматической дуговой сварки под слоем флюса или в среде защитных газов, контактной сварки на точечных машинах с выполнением соединения в нескольких точках, контактной шовной и рельефной сварки.

На данном сайте вы можете найти:

  • описания технологий различных видов сварки, применяемых на сегодняшний день, таких как: сварка плавлением с использованием плавящихся и неплавящихся электродов, присадочной проволоки, контактная сварка листовых конструкций, термическая резка металлов ацетиленом и кислородом, пайка и специальные методы сварки, холодная, газовая, термитная, лазерная, электроннолучевая сварка и пр.;
  • обзоры приспособлений и оборудования: сварочных аппаратов, инверторов, выпрямителей, трансформаторов, контактных машин, газовых горелок, резаков, металлообрабатывающих станков, генераторов и др.;
  • расходных материалов: электродов, сварочной проволоки, присадочных прутков, горючих и защитных газов и др.;
  • обзоры средств и способов индивидуальной защиты сварщика: респираторов от аэрозолей, масок со светофильтрами для защиты глаз от яркого светового и ультрафиолетового излучения, методов вентиляции для отвода вредных веществ из рабочей зоны, защиты от поражения электрическим током и т.п.;
  • материаловедение, методы термической обработки металлов и сплавов для улучшения или придания им требуемых технологических и механических свойств, например закалку стали для повышения прочности и твердости, отпуск для снятия внутренних напряжений и повышения пластичности, легирование сталей и т.п.;
  • причины образования и виды дефектов в швах и околошовной зоне, способы их предупреждения, обнаружения (контроля качества сварных соединений) и устранения;
  • способы резки металлов и производства заготовок на металлообрабатывающих станках;
  • статьи о сварке.

Задать вопрос или поделиться мнением можно на нашем форуме.

Технологии сварки

Данный раздел сайта ознакомит Вас со сварочным оборудованием, разнообразием методов сварки, их теоретическими основами и практическим применением.

 Сварка плавлениемСварка нагревом и расплавлением металла электрической дугой.  Контактная сваркаСварка на контактных машинах с приложением давления и нагревом в точке контакта свариваемых поверхностей.  Специальные методы сваркиДругие методы сварки.  ПайкаСоединение деталей расплавленным присадочным материалом без расплавления основного металла.  Сварка пластмассСварка полимерных материалов.  Сварка алюминия Сварка конструкций из алюминия и сплавов на его основе.  Сварка нержавейкиОсобенности сварки высоколегированных нержавеющих сталей.  Термическая резка Резка и газопламенная обработка металлов.  Газовая сваркаСварка металлов газовым пламенем.  Дефекты и деформации при сваркеВнутренние напряжения, деформации, трещины и другие дефекты, возникающие в свариваемых деталях.  Источники питания для сваркиПринципы работы источников тока и напряжения для сварки, сварочные аппараты.  Статьи о сваркеРазные статьи и справочные материалы о сварке и т.п.

 

Металлообработка

металлообработка

Чтобы получить из куска металла деталь требуемой формы, его необходимо обработать соответствующим образом. Резка металла, точение, шлифование и другие операции осуществляются на металлообрабатывающих станках. Данный раздел содержит основную информацию о станках и инструментах.

 Обработка металлов резаниемРезка металла, обработка на токарных станках, и т.п.

Материаловедение

материаловедение

Для обеспечения высоких эксплуатационных свойств изделия, нужно правильно подобрать материал для его изготовления и провести требуемую термообработку, которая упрочнит, снимет внутренние напряжения, повысит твердость, ударную вязкость детали или придаст ей другие полезные свойства.

 Термообработка и материалыДанный раздел содержит сведения о металлах и их сплавах, термической обработке.

 

Оборудование для сварки и металлообработки

Для сварки используется сварочное оборудование, такое как инверторы, сварочные аппараты, выпрямители и многое другое.

 Сварочное оборудованиеВ данном разделе содержатся обзоры и описания различных видов оборудования для сварки.

 Сварочный форум

Обсуждение  вопросов, касающихся технологий сварки, сварочного оборудования и материалов, металлообработки, термообработки.

Основные разделы форума:

Сварка

Обработка металлов

Материаловедение

 

svarder.ru

Технологии сварки

Сварочные столы и плиты TEMPUS - в наличии на складе! Большой выбор: Стол стационарный, Стол подъемный, Стол пятисторонний, Комплект оснастки Доставка по всей России!

При сварке термопласта лучом лазера нагрев соединяемых поверхностей достигается в результате превращения лучевой энергии лазера в тепловую в месте фокусировки луча (рис. 29.11). Особенность лазерного излучения состоит в его способности создавать в фокусе мощность значительной плотности. Для этого когерентный луч при помощи специальных линз собирается в узкий пучок, достигающий десятых долей миллиметра. Непрерывно действующий СО2-лазер мощностью 1 кВт позволяет в фокальном пятне диаметром 0,1 мм получить плотность тепловой мощности 3x10 Вт/мм2. Лазерная сварка эффективна при сварке тонких пленок из ПЭВД — δ=50÷50 мкм. Скорость сварки 3,3—4 м/с.

Сварка с помощью ИК-излучения основана на превращении лучистой энергии в тепловую внутри соединяемого материала. ИК-излучение имеет электромагнитную природу, считается, что ИК-спектр занимает область длин волн от 0,72 до 1000 мкм, т. е. от красной границы видимого спектра до коротковолновой части миллиметрового диапазона, ИК-лучи ведут себя как и любые другие лучи: отражаются, преломляются, поглощаются. Поглощаемость ИК-лучей телами и использована для сварки. Механизм преобразования ИК-лучей в тепло внутри материала состоит в следующем.

Сварка термопластов ТВЧ основана на нагреве в результате преобразования электрической энергии в тепловую непосредственно внутри самого материала.  Сущность процесса сварки ТВЧ заключается в следующем. Свариваемое изделие помещают в переменное электрическое поле высокой частоты. Поскольку пластмассы являются несовершенными диэлектриками, элементарные заряды при внесении диэлектрика в высокочастотное поле несколько смещаются, небольшое количество имеющихся в диэлектрике свободных зарядов образует ток проводимости.

Сварка трением основана на превращении механической энергии трения в тепловую энергию. Процесс состоит из двух стадий: нагрева и осадки.

Способ предложен в 1958 г. учеными МВТУ им. Н. Э. Баумана под руководством акад. Г. А. Николаева. Способ ультразвуковой сварки пластмасс заключается в том, что электрические колебания ультразвуковой частоты (18—30 кГц), вырабатываемые генератором, преобразуются в механические продольные колебания магнитострикционного преобразователя, вводятся в свариваемый материал с помощью продольно-колеблющегося инструмента-волновода, расположенного перпендикулярно свариваемым поверхностям.

Сущность способа контактной тепловой сварки заключается в том, что свариваемые детали в месте соединения нагреваются до температуры вязкотекучего состояния специальными инструментами-нагревателями, передающими тепло свариваемым поверхностям при контакте с ними. После разогрева свариваемых поверхностей нагреватель выводят из зоны соединения, и под действием давления детали свариваются.

Сущность процесса состоит в том, что расплавленный материал, выходящий из экструдера (экструзионная сварка или сварка экструдируемой присадкой) или из машины для литья под давлением, непрерывно или периодически подается в зазор между соединяемыми поверхностями, которые он нагревает до температуры сварки, сплавляясь с ними, так образуется сварной шов.

Сварка нагретым газом основана на использовании его тепловой энергии для разогрева свариваемых поверхностей и присадочного материала до вязкотекучего состояния или плавления. Тепло подводится непосредственно к соединяемым поверхностям последовательно от одного участка шва к другому. Сварка может осуществляться с применением присадочного материала и без него.

Для получения равномерного оплавления обеих кромок сварного соединения была выбрана схема сварки с расщепленным электродом при поперечном расположении электродных проволок по отношению к шву. Одним из важных параметров режима в этом случае является оптимальное расстояние между электродами, при котором обеспечивается правильное формирование сварного соединения (рис.87, 88). В качестве флюсовых подушек использовали флюсы АН-348-А, ОСЦ-45, ФЦ-6, АН-26, АН-60 и другие, однако лучшие результаты получены при сварке на стальной подкладке.

В качестве особенностей сварки никеля со сталями следует отметить большую склонность металла шва к образованию кристаллизационных трещин, а также весьма частые случаи образования в нем пор. Это объясняется прежде всего увеличенной деформацией металла в период его кристаллизации, возникающей в результате существенной разницы в коэффициентах линейного расширения железа и никеля.

Дуговая сварка металла малой толщины — до 1,5—2 мм в ряде случаев может производиться бортовыми швами. Для этой цели практическое применение находит способ сварки угольным электродом в атмосфере углекислого газа.

К аустенитно-мартенситному классу в соответствии с ГОСТ 5632—72 относятся стали, имеющие структуру аустенита и мартенсита, количество которых можно изменить в широких пределах К этому классу относятся стали, химический состав которых выбран с соотношением легирующих элементов, обеспечивающих начало мартенситного превращения при 20—60 °С.

При сварке сплавов Аl—Mg, Аl—Сu, Аl—Zn и Аl—Si установлена повышенная склонность к трещинообразованию на сплавах с максимальным эффективным интервалом кристаллизации. Металлургические способы уменьшения склонности к трещинам заключаются во введении в основной металл и сварочную проволоку отдельных химических элементов, которые, изменяя эффективный интервал кристаллизации и пластичность металла в твердо-жидком состоянии, оказывают влияние не только на величину горячеломкости металла при сварке, но и позволяют за счет смещения неравновесного солидуса по отношению к равновесному перенести трещину из опасной зоны (зоны сплавления) в наплавленный металл.

Алюминий с железом способен давать твердые растворы, интерметаллидные соединения (Fe2Al4—62,93 % Al; Fe2Al5— 54,71 % Al; FeAl2 —49,13% Al; FeAl —32,57 % Al и др.) и эвтектику (Al + FeAl3, Тпл = 654 °С, содержание железа в металле 1,8%). Растворимость железа в твердом состоянии ограничивается 0,053 % при эвтектической температуре. Растворимость алюминия в железе порядка 32%, т. е. в 600 раз выше. При затвердевании в структуре сплавов алюминия и железа выпадают кристаллы соединения FeAl5 (59,18 %).

При нормальной температуре сплавы железа с медью представляют собой твердые растворы железа в меди (ε-фаза, содержание Fe≤0,2%), меди в α-железе (<0,3% Сu) и смеси этих растворов (α + ε). Растворимость меди в α-железе меньше, чем в γ-железе. При 20 °С при равновесных условиях в α-железе растворяется менее 0,3 % Сu.

Титан с железом образует систему ограниченной растворимости с эвтектоидным распадом β-фазы. Предел растворимости титана в железе снижается от 12 % при 1200 °С до 4 % при 300 °С. Растворимость железа в а-титане составляет 0,5 и 0,05—0,1 % соответственно при 615 и 20 °С.

В сравнении с сочетанием алюминия с другими металлами (например, Ni, Fe) для взаимодействия Аl с Сu характерны большие скорости роста прослоек интерметаллидов и малая продолжительность латентного периода. Для каждого способа существует достаточно узкий диапазон значений технологических параметров режимов сварки и температурно-временных условий эксплуатации биметаллического соединения. Работа биметалла Al + Cu допускается при температуре, не превышающей 400 °С во избежание интенсивного роста диффузионного слоя и резкого ухудшения механических свойств.

Основные трудности получения непосредственного сварного соединения этого сочетания металлов связаны с образованием химических соединений TiAl при 1460 °С (содержание Аl 36,03 %) и TiAl3 при 1340 °С (содержание А1 60—64%) в результате перитектической реакции. Предельная растворимость Ti в Аl мала и составляет 0,26—0,28 % при 665 °С.

Затруднения, возникающие при сварке этих материалов, определяются прежде всего: 1) высокой химической активностью по отношению к компонентам воздуха при высоких температурах; 2) резким охрупчиванием при насыщении примесями внедрения; 3) склонностью к перегреву, вызывающему рекристаллизацию и рост зерна: 4) резким повышением предела текучести с понижением температуры и ростом величины исходного зерна.

Металл Ti относится к четвертой группе периодической системы элементов. Атомный номер 22, атомная масса 47,9. Титан имеет две аллотропические модификации: низкотемпературную α с гексагональной плотноупакованной решеткой, существующую при температурных ниже 882 °С, и высокотемпературную β с объемноцентрированной кубической решеткой, существующей при температурах вплоть до точки плавления.

www.autowelding.ru

Аттестация технологий сварки | АНО «ВРАЦ»

АТТЕСТАЦИЯ ТЕХНОЛОГИЙ СВАРКИ (НАПЛАВКИ) В СООТВЕТСТВИИ С ТРЕБОВАНИЯМИ РД  03-615-03

Аттестационный центр по аттестации технологий сварки (наплавки) в составе АНО «Вологодский региональный аттестационный центр» зарегистрирован в реестре СРО НП НАКС за № АЦСТ – 20.Аттестат соответствия № АЦСТ-20 от 11.03.2016 года, действителен до 11.03.2019 года.

Группы опасных технических устройств:

  • ПТО – подъемно-транспортное оборудование.
  • КО – котельное оборудование.
  • ГО – газовое оборудование.
  • ОХНВП – оборудование химических, нефтехимических, нефтеперерабатывающих и взрывопожароопасных производств.
  • МО – металлургическое оборудование.
  • СК – строительные конструкции.
  • НГДО – Нефтегазодобывающее оборудование.

Виды аттестации технологий:

  • Производственная аттестация технологий сварки (наплавки).

Способы сварки (наплавки):

  • ААД – автоматическая аргонодуговая сварка неплавящимся электродом.
  • ААДП – автоматическая аргонодуговая сварка плавящимся электродом.
  • АФ – автоматическая сварка под флюсом.
  • АФЛН – автоматическая наплавка ленточным электродом.
  • АФПН – автоматическая наплавка проволочным электродом под флюсом.
  • Г – газовая сварка.
  • ЗН – сварка с закладными нагревателями.
  • МАДП – механизированная аргонодуговая сварка плавящимся электродом.
  • МП – механизированная сварка плавящимся электродом в среде активных газов и смесях.
  • МПГ – механизированная сварка порошковой проволокой в среде активных газов.
  • МПИ – механизированная сварка порошковой проволокой в среде инертных газов и смесях.
  • МПС – механизированная сварка самозащитной порошковой проволокой.
  • НИ – сварка нагретым инструментом.
  • РАД – ручная аргонодуговая сварка неплавящимся электродом.
  • РАДН – ручная аргонодуговая наплавка.
  • РД – ручная дуговая сварка покрытыми электродами.
  • РДН – ручная дуговая наплавка покрытыми электродами.

     Производственную аттестацию технологии сварки и наплавки осуществляют с целью подтверждения того, что организация, занимающаяся изготовлением, монтажом, ремонтом или реконструкцией технических устройств, оборудования и сооружений применяемых на опасных производственных объектах, обладает техническими, организационными возможностями и квалифицированными кадрами для производства сварки (наплавки) по аттестованным технологиям, а также проверки того, что сварные соединения (наплавки), выполненные в условиях конкретного производства по аттестуемой технологии, обеспечивают соответствие требованиям к опасным производственным объектам общих и специальных технических регламентов, а до их вступления в силу – нормативных документов, утвержденных и согласованных Ростехнадзором, конструкторской (в части требований к сварке и контролю качества) и технологической документации.

     Для проведения производственной аттестации технологии сварки (наплавки) организация-заявитель должна представить соответствующую документацию, а именно:

  1. Заявку с приложениями:
  2. Производственно-технологическую документацию заявленного к аттестации технологического процесса, необходимую для составления программы производственной аттестации заявленной технологии, включая сведения о нормативных документах, регламентирующих применение аттестуемой технологии сварки (наплавки).

    Производственно-техническая документация (ПТД), определяющая аттестуемую технологию сварки, должна быть представлена в виде технологических инструкций и карт технологического процесса выполнения сварного соединения или элемента сварной конструкции, включающих исчерпывающие сведения об основных операциях и параметрах технологического процесса. ПТД должна содержать требования к подготовке сварного соединения к сварке, сварочным материалам, оборудованию (сварочному, сборочному и вспомогательному), предварительному и сопутствующему подогреву к параметрам процесса сборки и сварки, в том числе к последовательности выполнения прихваток, швов и отдельных слоев, к термической обработке после сварки, методам контроля, объему контроля, требования к качеству и др.

  3. Справку о результатах контроля производственных сварных соединений за последние 6 месяцев, подписанную руководителем лаборатории и заверенную печатью организации-заявителя (при периодической аттестации).

  4. Заверенные копии документов на аттестованных сварщиков и специалистов сварочного производства (штатные сотрудники организации-заявителя), на аттестованное сварочное оборудование, документы об аттестации лаборатории неразрушающих методов контроля и специалистов по контролю качества сварных соединений.

  5. Данные о предыдущей аттестации (при периодической аттестации).

      На основании представленной документации аттестационный центр составляет программу производственной аттестации, согласно которой в производственных условиях заявителя после проверки организационной готовности (форма Акта) выполняется сварка контрольных сварных соединений с последующим неразрушающим и разрушающим контролем (формы заключений).Если в результате проверки установлено, что по каким-либо признакам организация не удовлетворяет требованиям, необходимым для проведения производственной аттестации технологии сварки, и не имеет возможности исправить выявленные несоответствия в согласованные сроки, аттестационный центр оформляет соответствующее отрицательное заключение с указанием причин.В дальнейшем организация-заявитель может повторно подать заявку на производственную аттестацию технологии сварки только после устранения выявленных несоответствий. При положительных результатах проверки выполняется сварка КСС в условиях конкретного производства.

Местом сварки КСС может быть:— объект, где организацией-заявителем осуществляется производство сварочных работ в процессе строительства, монтажа, ремонта объекта с применением технологий сварки, заявленных на аттестацию;— завод (цех), оснащенный соответствующим оборудованием, находящийся в собственности у организации-заявителя или другом законном основании для выполнения комплекса сварочных работ при изготовлении, ремонте продукции, включая подготовку и сборку с использованием технологий сварки, заявленных на аттестацию;— производственная база, организованная организацией-заявителем на время строительства, монтажа, ремонта объекта или на постоянной основе для выполнения комплекса сварочных работ, включая подготовку и сборку производственных сварных соединений с использованием технологий сварки, заявленных на аттестацию.Выполнение КСС в иных местах, в том числе организуемых специально только для сварки КСС, не допускается.

При сварке КСС должны соблюдаться следующие условия конкретного производства:— специалисты сварочного производства и сварщики (операторы) должны быть штатными сотрудниками организации, и иметь аттестационные удостоверения с областью распространения, соответствующей применяемой технологии сварки;— применяемое сварочное и вспомогательное оборудование, принадлежащее организации- заявителю на праве собственности или другом законном основании, должно соответствовать оборудованию, используемому при сварке производственных сварных соединений.

    По результатам производственной аттестации технологии сварки (наплавки) аттестационная комиссия составляет Заключение о готовности организации-заявителя к использованию аттестованных технологий. Заключение составляют с учетом области применения ПТД, данных карт технологических процессов сварки контрольных сварных соединений, актов, протоколов и заключений по контролю качества контрольных сварных соединений, сертификатов на основные и сварочные материалы.

    При указании места сварки КСС в Заключении о готовности организации- заявителя к использованию аттестованной технологии сварки кроме адреса указывается назначение (характеристику) объекта, например: строительство магистрального газопровода; монтаж резервуара; сварочный участок цеха №3 и т.п.

       Аттестационный центр направляет один экземпляр заключения аттестационной комиссии с приложениями в НАКС. На основании проведенной экспертизы представленных АЦ документов в НАКС оформляется «Свидетельство о готовности организации-заявителя к использованию аттестованной технологии».

weld35.ru