Углекислый газ и карбонатная система воды. Углекислый газ вода
Углекислый газ в воде
Углекислый газ является конечным продуктом фотосинтеза. Растения получают С02 из гидрокарбоната (НСО2). В ходе выдерживания аквариума из-за роста бактерий и других микроорганизмов происходит «перепроизводство» углекислого газа. На этом этапе искусственно вводить его в аквариум не только бесполезно, но и, более того, опасно: переизбыток углекислого газа приведет лишь к снижению рН.
В обычной водопроводной воде свободного углекислого газа практически нет (ррт = 3-4). Нужно помнить что, углекислый газ находится в неразрывной связи с карбонатной жесткостью и уровнем рН, и следовательно, устранение его из аквариума приведет к повышению уровня рН. Если аквариум подвергается действию прямых солнечных лучей, это ускоряет процессы фотосинтеза, что приводит к понижению уровня рН - это одна из причин, по которым аквариум не следует устанавливать слишком близко к окну. Поясним это: когда количество С02 увеличивается, рН падает.
Реагируя с водой, углекислый газ образует угольную кислоту (Н2С03~), что приводит к повышению количества карбонатных и гидрокарбонатных ионов. Таким образом, добавление в воду СО, приводит к увеличению количества ионов Н+, в результате чего вода окисляется. Когда же углекислый газ используется в фотосинтезе, это приводит к обратным результатам, хотя растения и забирают С02 из гидрокарбоната НС03", который содержится в воде (если показатель рН равен 8,2, то 90 процентов ее углекислого газа связано в гидрокарбонате).
Очевидно, что углекислый газ играет важную роль в общем благополучии и стабильности жизни аквариума. Кроме того, мы можем превратить его в инструмент стабилизации рН и создания буферного резерва, если он используется в сочетании с кальциевым реактором. Углекислый газ исключительно важен для роста растений, и его рекомендуется поддерживать на уровне 10-25 частиц на миллион. А вот уровень С02, превышающий 25 частиц на миллион, опасен для рыб и других обитателей аквариума.
Углекислый газ и карбонатная система воды
Многим аквариумистам известны рекомендации по использованию для размножения рыб воды, более мягкой и кислой, по сравнению с аквариумной. Удобно пользоваться для этой цели дистиллированной водой, мягкой и слабокислой, смешивая ее с водой из аквариума. Но оказывается, что при этом жесткость исходной воды уменьшается пропорционально разведению, а рН практически не изменяется. Свойство сохранять значение показателя рН независимо от степени разведения, называется буферностью. В этой статье мы познакомимся с основными компонентами буферных систем аквариумной воды: кислотностью воды - рН, содержанием углекислого газа - СО2, карбонатной «жесткостью» - dКН (эта величина показывает содержание в воде гидрокарбонат-ионов НСО3-; в рыбохозяйственной гидрохимии этот параметр называют щелочностью), общей жесткостью – dGН (для упрощения принимается, что ее составляют только ионы кальция – Са++). Обсудим их влияние на химический состав природной и аквариумной воды, собственно буферные свойства, а также механизм воздействия рассматриваемых параметров на организм рыб. Большинство химических реакций, рассматриваемых ниже, являются обратимыми, поэтому вначале важно познакомиться с химическими свойствами обратимых реакций; это удобно сделать на примере воды и показателя рН.
ОГЛАВЛЕНИЕ
Далее - смотри вторую часть
- 6. СО2 и физиология дыхания аквариумных рыб
- 7. Мини-практикум
- 8. Использованная литература
1. О ХИМИЧЕСКИХ РАВНОВЕСИЯХ, ЕДИНИЦАХ ИЗМЕРЕНИЯ И pН
Вода является хотя и слабым, но все же электролитом, т. е. способна к диссоциации, описываемой уравнением
Н2О↔Н+ +ОН-
Этот процесс обратим, т.е.
Н++ОН-↔Н2О
C химической точки зрения ион водорода Н+ всегда является кислотой. Ионы, способные связывать, нейтрализовывать кислоту (Н+), являются основаниями. В нашем примере это – гидроксил-ионы (ОН-), но в аквариумной практике, как будет показано ниже, доминирующим основанием является гидрокрабонат-ион НСО3-, ион карбонатной «жесткости». Обе реакции протекают с вполне измеримыми скоростями, определяемыми концентрацией: скорости химических реакций пропорциональны произведению концентраций реагирующих веществ. Так для обратной реакции диссоциации воды Н++ОН->Н2О ее скорость выразится следующим образом:
Vобр = Кобр[Н+][OH-]
К – коэффициент пропорциональности, называемый константой скорости реакции.[ ]-квадратные скобки обозначают молярную концентрацию вещества, т.е. количество молей вещества в 1 литре раствора. Моль можно определить как вес в граммах (или объем в литрах - для газов) 6•1023 частиц (молекул, ионов) вещества - число Авогадро. Число, показывающее вес 6•1023 частиц в граммах равно числу, показывающему вес одной молекулы в дальтонах.
Так, например, выражение [h3O] обозначает молярную концентрацию водного раствора … воды. Молекулярный вес воды составляет 18 дальтон (два атома водорода по 1д, плюс атом кислорода 16д), соответственно 1 моль (1М) Н2О – 18 грамм. Тогда 1 литр (1000 грамм) воды содержит 1000:18=55,56 молей воды, т.е. [h3O]=55,56М=const.
Поскольку диссоциация – процесс обратимый (Н2О-Н++ОН-), то при условии равенства скоростей прямой и обратной реакции (Vпр=Vобр), наступает состояние химического равновесия, при котором продукты реакции и реагирующие вещества находятся в постоянных и определенных соотношениях: Кпр[h3O] = Kобр[H+][OН-]. Если константы объединить в одной части уравнения, а реагенты в другой, то получим
Кпр/Кобр = [H+][OH-]/[h3O] = К
где К также является постоянной величиной и называется константой равновесия.
Последнее уравнение является математическим выражением т.н. закона действия масс: в состоянии химического равновесия отношение произведений равновесных концентраций реагентов является постоянной величиной. Константа равновесия показывает, при каких пропорциях реагентов наступает химическое равновесие. Зная значение К, можно предсказать направление и глубину протекания химической реакции. Если К>1, реакция протекает в прямом направлении, если К<1 – в обратном. Используя константу равновесия, с химическими уравнениями можно обращаться как с алгебраическими и производить соответствующие вычисления. Точность их не очень высока, но они относительно просты и наглядны, что позволяет глубже понять смысл рассматриваемых процессов. Численное значение константы равновесия индивидуально и постоянно для каждой обратимой химической реакции. Оно определяется экспериментально, и эти значения приводятся в химических справочниках.
В нашем примере К= [H+][OН-]/[h3O] = 1,8•10-16. Поскольку [h3O] =55,56 =const, то ее можно объединить с К в левой части уравнения. Тогда:
К[h3O]=[H+][OH-]=(1,8•10-16)•(55,56)=1•10-14= const. = Кw
Преобразованное в такую форму уравнение диссоциации воды называется ионным произведением воды и обозначается Кw. Значение Кw остается постоянным при любых значениях концентраций Н+ и ОН-, т.е. с увеличением концентрации ионов водорода Н+, уменьшается концентрация ионов гидроксила – ОH- и наоборот. Так, например, если [H+] = 10-6, то [OH-] = Kw/[H+] = (10-14)/(10-6)=10-8. Но Кw = (10-6).(10-8) =10-14 = const. Из ионного произведения воды следует, что в состоянии равновесия [H+] = [OH-] = √Кw = √1•10-14 = 10-7М.
Однозначность связи между концентрацией ионов водорода и гидроксила в водном растворе позволяет для характеристики кислотности или щелoчности среды пользоваться одной из этих величин. Принято пользоваться величинoй концентрации ионов водорода Н+. Поскольку величинами порядка 10-7 оперировавть неудобно, в 1909 году шведский химик К.Серензен предложил использовать для этой цели отрицательный логарифм концентрации водородных ионов Н+ и обозначил его рН, от лат. potentia hydrogeni – сила водорода: рН = -lg[H+]. Тогда выражение [H+]=10-7 можно записать коротко как pH=7. Т.к. предложенный параметр не имеет единиц измерения, он называется показателем (рН). Удобство предложения Серензона вроде бы очевидно, но он подвергался критике современников за непривычную обратную зависимость между концентрацией ионов водорода Н+ и значением показателя рН: с увеличением концентрации Н+, т.е. с увеличением кислотности раствора, значение показателя рН уменьшается. Из ионного произведения воды следует, что показатель рН может принимать значения от 0 до 14 с точкой нейтральности рН=7. Органы вкуса человека начинают различать кислый вкус со значения показателя рН=3,5 и ниже.
Для аквариумистики актуален диапазон рН 4,5-9,5 (ниже будет рассматриваться только он) и традиционно принята следующая шкала с непостоянной ценой деления:
- рН<6-кислая
- рН 6,0-6,5 – слабокислая
- рН 6,5-6,8 – очень слабокислая
-
рН 7,2-7,5 – очень слабощелочная
-
рН 7,5-8,0 - слабощелочная
-
рН>8 – щелочная
На практике в большинстве случаев гораздо информативнее оказывается более грубая шкала с постоянной ценой деления:
- рН=5±0,5 – кислая
- рН=6±0,5 – слабокислая
- рН=7±0,5 – нейтральная
- рН=8±0,5 – слабощелочная
- рН>8,5 – щелочная
Среды с рН<4,5 и рН>9,5 являются биологически агрессивными, и их следует считать непригодными для жизни обитателей аквариума. Поскольку показатель рН является логарифмической величиной, то изменение рН на 1 единицу означает изменение концентрации ионов водорода в 10 раз, на 2 – в 100 раз и т.д.. Изменение концентрации Н+ вдвое приводит к изменению значения показателя рН лишь на 0,3 единицы.
Многие аквариумные рыбы без особого вреда для здоровья переносят и 100-кратные (т.е. на 2 единицы рН) изменения кислотности воды. Разводчики харациновых и других т.н. мягководных рыб, перекидывают производителей из общего аквариума (часто со слабощелочной водой) в нерестовик (со слабокислой) и обратно без промежуточной адаптации. Практика также показывает, что большинство обитателей биотопов с кислой водой в неволе лучше чувствует себя в воде с рН 7,0-8,0. С. Спотт считает рН 7,1-7,8 оптимальным для пресноводного аквариума.
Дистиллированная вода имеет рН 5,5–6,0, а не ожидаемое рН=7. Чтобы разобраться с этим парадоксом, необходимо познакомиться с «благородным семейством»: СО2 и его производными.
2. СО2 СО ТОВАРИЩИ, pН, И СНОВА ЕДИНИЦЫ ИЗМЕРЕНИЯ
Согласно закону Генри содержание газа воздушной смеси в воде пропорционально его доле в воздухе (парциальному давлению) и коэффициенту абсорбции. Воздух содержит до 0,04% СО2, что соответствует его концентрации до 0,4 мл/л. Коэффициент абсорбции СО2 водой=12,7. Тогда 1 литр воды может растворить 0,6 – 0,7 мл СО2 (мл, а не мг!). Для сравнения, его биологический антипод – кислород, при 20%-ном содержании в атмосфере и коэффициенте абсорбции 0,05 обладает растворимостью 7 мл/л. Сравнение коэффициентов абсорбции показывает, что при прочих равных растворимость СО2 значительно превышает растворимость кислорода. Попробуем разобраться, за что же такая несправедливость.
В отличие от кислорода и азота, углекислый газ - СО2, является не простым веществом, а химическим соединением – оксидом. Как и другие оксиды, он взаимодействует с водой с образованием гидратов оксидов и, как и у других неметаллов, его гидроксидом является кислота (угольная):
СО2+Н2О = Н2СО3.
В итоге большей относительной растворимостью углекислый газ обязан химическому связыванию его водой, чего не происходит ни с кислородом, ни с азотом. Рассмотрим внимательнее кислотные свойства угольной кислоты, применив закон действия масс и приняв во внимание, что [h3O] = const:
СО2+Н2О=Н++НСО3-; К1 = [Н+][HCO3-]/[CO2] = 4•10-7НСО3-=Н++СО3--; К2 = [H+][CO3--]/[HCO3-] = 5,6•10-11
здесь К1 и К2 – константы диссоциации угольной кислоты по 1 и 2-ой ступени.
Ионы НСО3- называются гидрокарбонатами (в старой литературе бикарбонатами), а ионы СО3-- - карбонатами. Порядок величин К1 и К2 говорит о том, что угольная кислота является весьма слабой кислотой (К1<1 и К2 <1), а сравнение величин К1 и К2 – о том, что в ее растворе доминируют гидрокарбонат-ионы (К1>К2).
Из уравнения К1 можно рассчитать концентрацию ионов водорода Н+:
[H+] = K1[CO2]/[HCO3-]
Если выразить концентрацию Н+ через рН, как это в свое время сделали Хендерсон и Хассельбальх для теории буферных растворов, то получим:
рН = рК1 – lg[CO2]/[HCO3-]или удобнеерН = рК1 + lg[HCO3-]/[CO2]
где, по аналогии с рН, рК1 = -lgК1 =-lg4•10-7 = 6,4 = const. Тогда pH=6,4 + lg[HCO3-]/[CO2]. Последнее уравнение известно как уравнение Хендерсона – Хассельбальха. Из уравнения Хендерсона – Хассельбальха следуют по крайней мере два важных вывода. Во-первых, для анализа величины показателя рН необходимо и достаточно знания концентраций компонентов только СО2-системы. Во-вторых, значение показателя рН определяется отношением концентраций [HCO3-]/[CO2], а не наоборот.
Поскольку содержание [HCO3-] неизвестно, для вычисления концентрации Н+ в дистиллированной воде можно воспользоваться принятой в аналитической химии формулой [H+] = √K1[CO2]. Тогда рН = -lg√K1[CO2]. Чтобы оценить интересующую нас величину показателя рН, вернемся к единицам измерения. Из закона Генри известно, что концентрация СО2 в дистиллированной воде составляет 0,6мл/л. Выражение [CO2] означает молярную концентрацию (см. выше) углекислого газа. 1М СО2 весит 44 грамма, и при нормальных условиях занимает объем 22,4 литра. Тогда для решения задачи необходимо определить, какую долю от 1М, т.е. от 22,4 литров, составляют 0,6 мл. Если концентрация СО2 выражена не в объемных, а в весовых единицах, т.е. в мг/л, то искомую долю необходимо считать от молярного веса СО2 – от 44 грамм. Тогда искомая величина составит:
[CO2] = x•10-3/22,4 = y•10-3/44
где х – объемная (мл/л), у – весовая (мг/л) концентрация СО2. Простейшие вычисления дают приблизительную величину 3•10-5М СО2, или 0,03mM. Тогда
рН = -lg√K1[CO2] = -lg√(4•10-7)(3•10-5) = -lg√12•10-12 = -lg(3,5•10-6) = 5,5
что вполне согласуется с измеряемыми значениями.
Из уравнения Хендерсона-Хассельбальха видно, как величина показателя рН зависит от отношения [НСO3-]/[СО2]. Приблизительно можно считать, что если концентрация одного компонента превышает концентрацию другого в 100 раз, то последней можно пренебречь. Тогда при [НСО3-]/[СО2] = 1/100 рН = 4,5, что можно считать нижним пределом для СО2-системы. Меньшие значения показателя рН обусловлены присутствием не угольной, а других минеральных кислот, например серной, соляной. При [НСО3-]/[СО2] = 1/10, рН = 5,5. При [НСО3-]/[СО2] = 1, или [НСО3-] = [СО2], рН = 6,5. При [НСО3-]/[СО2] = 10, рН = 7,5. При [НСО3-]/[СО2] =100, рН = 8,5. Считается, что при рН>8,3 (точка эквивалентности фенолфталеина) свободная углекислота в воде практически отсутствует.
3. ПРИРОДНАЯ ВОДА И УГЛЕКИСЛОТНОЕ РАВНОВЕСИЕ
В природе атмосферная влага, насыщаясь СО2 воздуха и выпадая с осадками, фильтруется через геологическую кору выветривания. Принято считать, что там она, взаимодействуя с минеральной частью коры выветривания, обогащается т.н. типоморфными ионами: Ca++, Mg++, Na+, SO4--, Сl- и формирует свой химический состав.
Однако работами В.И. Вернадского и Б.Б. Полынова показано, что химический состав поверхностных и грунтовых вод регионов с влажным и умеренно влажным климатом формирует в первую очередь почва. Влияние же коры выветривания связано с ее геологическим возрастом, т.е. со степенью выщелоченности. Разлагающиеся растительные остатки поставляют в воду СО2, НСО3- и зольные элементы в пропорции, соответствующей их содержанию в живом растительном веществе: Cа>Na>Mg. Любопытно, что практически во всем мире питьевая вода, используемая и в аквриумистике, в качестве доминирующего аниона содержит гидрокарбонат-ион НСО3-, а из катионов – Ca++, Na+, Mg++, нередко с некоторой долей Fe. А поверхностные воды влажных тропиков вообще удивительно однообразны по химическому составу, отличаясь лишь степенью разведения. Жесткость таких вод крайне редко достигает значений (8° dGH), удерживаясь обычно на уровне до 4°dGН. Ввиду того, что в таких водах [CO2]=[HCO3-], они имеют слабокислую реакцию и значение показателя рН 6,0-6,5. Обилие листового опада и активно идущее его разрушение при большом количестве осадков могут приводить к весьма высокому содержанию в таких водах СО2 и гумусовых веществ (фульвокислот) при почти полном отсутствии зольных элементов. Таковы т.н. «черные воды» Амазонии, в которых значение показателя рН может опускаться до 4,5 и дополнительно удерживаться т.н. гуматным буфером.
На содержание СО2 в природных водах оказывает влияние и их подвижность. Так в проточных водах СО2 содержится в концентрации 2 – 5 мг/л (до 10), тогда как в стоячих водах болот и прудов эти величины достигают значения 15 – 30 мг/л .
В засушливых и бедных растительностью регионах на формирование ионного состава поверхностных вод заметное влияние оказывает геологический возраст горных пород, слагающих кору выветривания и их химический состав. В них рН и пропорции типоморфных ионов будут отличаться от приведенных выше. В результате формируются воды с заметным содержанием SО4— и Сl-, а из катионов могут преобладать Nа+ с заметной долей Mg++. Возрастает и общее содержание солей – минерализация. В зависимости от содержания гидрокарбонатов, значение показателя рН таких вод колеблется в среднем от рН 7±0,5 до рН 8±0,5, а жесткость всегда выше 10°dGH. В стабильно щелочных водах, при рН>9, основными катионами всегда будут Mg++ и Na+ с заметным содержанием калия, поскольку Са++ осаждается в форме известняка. В этом плане особенно интересны воды Великой Африканской рифтовой долины, которая характеризуется т.н. содовым засолением. При этом даже воды таких гигантов, как озера Виктория, Малави и Танганьика отличаются повышенной минерализацией и таким высоким содержанием гидрокарбонатов, что карбонатная «жесткость» в их водах превышает жесткость общую: dKH>dGH.
Содержащиеся в воде СО2 и его производные – гидрокарбонаты и карбонаты, связаны между собой т.н. углекислотным равновесием:
СО2 + Н2О↔Н++НСО3-↔2Н+ + СО3--
В тех регионах, где кора выветривания молодая и содержит известняк (СаСО3), углекислотное равновесие выражается уравнением
СаСО3 + СО2 + Н2О = Cа++ + 2НСО3-
Применив к этому уравнению закон действия масс (см. выше) и приняв во внимание, что [h3O]=const и [CaCO3]=const (твердая фаза), получаем:
[Ca++][HCO3-]2/[CO2] = КСО2
где КСО2 – константа углекислотного равновесия.
Если концентрации действующих веществ выражены в миллимолях (mM,10-3М), то КСО2 = 34,3. Из уравнения КСО2 видна неустойчивость гидрокарбонатов: в отсутствие СО2, т.е. при [CO2]=0, уравнение не имеет смысла. При отсутствии углекислого газа гидрокарбонаты разлагаются до СО2 и подщелачивают воду: НСО3-→ОН-+СО2. Содержание свободной СО2 (для «неживой» воды весьма незначительное), которое обеспечивает устойчивость данной концентрации гидрокарбонатов при неизменном рН, называется равновесной углекислотой - [CO2]р. Она связана как с содержанием углекислого газа в воздухе так и с dКН воды: с ростом dКН увеличивается и количество [СО2]р. Содержание СО2 в природных водах как правило близко к равновесной и именно эта их особенность, а не значения dKH, dGН и рН чаще всего отличает состояние природных вод от аквариумной воды. Решив уравнение КСО2 относительно СО2, можно определить концентрацию равновесной углекислоты:
[CO2]р = [Ca++][HCO3-]2/КСО2
Поскольку в пресноводной аквариумистике понятия общей жесткости, карбонатной «жесткости» и кислотности являются культовыми, то интересно, что уравнения:
К1 = [H+][HCO3-]/[CO2]иКСО2 = [Ca++][HCO3-]2/[CO2]
объединяют их в одну систему. Разделив КСО2 на К1, получим обобщенное уравнение:
КСО2/К1=[Ca++][HCO3-]/[H+]
Напомним, что [H+] и рН объединяет обратнопропорциональная зависимость. Тогда последнее уравнение показывает, что параметры: dGH, dKH и рН связаны прямопропорционально. Это значит, что в состоянии, близком к газовому равновесию, увеличение концентрации одного компонента приведет к увеличению концентрации остальных. Данное свойство хорошо заметно при сравнении химического состава природных вод разных регионов: более жесткие воды отличаются более высокими значениями рН и dКН.
Для рыб оптимальное содержание СО2 составляет 1–5мг/л. Концентрации более 15мг/л опасны для здоровья многих видов аквариумных рыб (см. ниже).
Таким образом, с точки зрения углекислотного равновесия, содержание СО2 в природных водах всегда близко к [CO2]р.
4. ОБ АКВАРИУМНОЙ ВОДЕ И ПРОИЗВЕДЕНИИ РАСТВОРИМОСТИ
Аквариумная вода не бывает равновесной по содержанию СО2 в принципе. Измерение содержания углекислоты с помощью СО2-теста позволяет определить общее содержание углекислого газа – [CO2]общ, значение которого, как правило, превышает концентрацию равновесной углекислоты – [CO2]общ>[CO2]р. Это превышение называется неравновесной углекислотой – [CO2]нер. Тогда
[CO2]нер = [CO2]общ – [CO2]р
Обе формы углекислоты – и равновесная и неравновесная, являются не измеряемыми, а только расчетными параметрами. Именно неравновесный углекислый газ обеспечивает активный фотосинтез водных растений и с другой стороны, может создавать проблемы при содержании отдельных видов рыб. В хорошо сбалансированном аквариуме естественные суточные колебания содержания углекислого газа не приводят к падению его концентрации ниже [CО2]ри не превышают возможностей буфера аквариумной воды. Как будет показано в следующей главе, амплитуда этих колебаний не должна превышать ±0,5[CO2]р. Но при увеличении содержания углекислого газа на более, чем 0,5[CO2]р, динамика заявленных компонентов СО2-системы – dGH, dKH и рН, будет сильно отличаться от природной: общая жесткость (dGH) в такой ситуации возрастает на фоне падения значений рН и dКН. Именно такая ситуация в корне может отличать аквариумную воду от природной. Происходит повышение dGH в результате растворения известняка грунта. В такой воде могут затрудняться жизненно важные процессы газообмена в организме рыб, в частности – выведение СО2, а формирующиеся ответные патологические процессы часто приводят к ошибкам при оценке ситуации (см ниже). В морских рифовых аквариумах такая вода может растворять свежеосажденный СаСО3 скелета жестких кораллов, в том числе на месте травмы, что может приводить к отслоению тела полипа от скелета и гибели животного при благополучии аквариума по другим параметрам.
При обилии водных растений, на свету возможна ситуация, когда [CO2]общ<[CO2]р. В этом случае растения будут влачить жалкое существование, а вода будет склонна к отложению СаСО3, особенно на зрелых листьях. Поэтому в аквариумах для выращивания водных растений рекомендуется поддерживать [CO2]нер< 3 – 5 мг/л. Последнее неравенство также характерно для морских вод коралловых рифов. В океанологии данная ситуация описывается т.н. индексом насыщенности вод карбонатом кальция. В такой обстановке фотосинтез симбионтных зооксантелл в телах коралловых полипов еще больше усиливает приведенное неравенство, что в итоге приводит к отложению СаСО3 и росту скелета полипа. К сожалению, в морской аквариумистике этот параметр применения пока не нашел. Ввиду такого важного значения растворимости известняка СаСО3, познакомимся с химией этого процесса подробнее.
Как известно, осаждение из раствора кристаллов любого вещества начинается при его т.н. насыщенных концентрациях, когда вода больше не способна вмещать в себе это вещество. Водный раствор над осадком (твердой фазой) всегда будет насыщен ионами вещества, независимо от его растворимости и будет находиться в состоянии химического равновесия с твердой фазой. Для известняка это выразится уравнением: СаСО3(тв.)=Са+++СО3--(р-р). Применив закон действия масс, получим: [Ca++][CO3--](р-р)/[CaCO3](тв.)=К. Поскольку [CaCO3](тв.)=const (твердая фаза), то тогда [Ca++][CO3--](р-р)=К. Т.к. последнее уравнение характеризует способность вещества растворяться, то такое произведение насыщенных концентраций ионов трудно растворимых веществ назвали произведением растворимости - ПР (ср. с ионным произведением воды Кw).
ПРСаСО3 = [Ca++][CO3--] = 5•10-9. Как и ионное произведение воды, ПРСаСО3 остается постоянным, независимо от изменения концентраций ионов кальция и карбонатов. Тогда при наличии в аквариумном грунте известняка, в воде всегда будут присутствовать карбонат-ионы в количестве, определяемом ПРСаСО3 и общей жесткостью:
[CO3--] = ПРСаСО3/[Ca++]
В присутствии в воде неравновесного углекислого газа происходит реакция:
СО3--+СО2+Н2О=2НСО3-
которая понижает насыщающую концентрацию карбонат-ионов [СО3--]. В результате в соответствии с произведением растворимости, в воду будут поступать компенсаторные количества СО3-- из СаСО3, т.е. известняк начнет растворяться. Поскольку СО2+Н2О=Н++НСО3-, смысл приведенного выше уравнения можно сформулировать точнее: СО3--+Н+=НСО3-. Последнее уравнение говорит о том, что карбонаты, находящиеся в воде в соответствии с ПРСаСО3, нейтрализуют кислоту (Н+), образующуюся при растворении СО2, в результате чего рН воды сохраняется неизменным. Таким образом, мы постепенно пришли к тому, с чего начинали разговор:
5. КАРБОНАТНАЯ БУФЕРНАЯ СИСТЕМА
Растворы называют буферными, если они обладают двумя свойствами:
А: Значение показателя рН растворов не зависит от их концентрации, или от степени их разведения.
Б: При добавлении кислоты (Н+), или щелочи (ОН-), величина их показателя рН мало изменяется, пока концентрация одного из компонентов буферного раствора не изменится более, чем наполовину.
Указанными свойствами обладают растворы, состоящие из слабой кислоты и ее соли. В аквариумной практике такой кислотой является углекислота, а ее доминирующей солью – гидрокарбонат кальция – Са(НСО3)2. С другой стороны, повышение содержания СО2 выше равновесного эквивалентно добавлению в воду кислоты - Н+, а понижение его концентрации ниже равновесного – равносильно добавлению щелочи - ОН- (разложение гидрокарбонатов - см. выше). Количество кислоты или щелочи, которое необходимо внести в буферный раствор (аквариумную воду), чтобы значение показателя рН изменилось на 1 единицу, называется буферной емкостью. Отсюда следует, что рН аквариумной воды начинает изменяться раньше, чем исчерпывается ее буферная емкость, но по исчерпании буферной емкости, рН изменяется уже эквивалентно количеству внесенной кислоты, или щелочи. В основе работы буферной системы лежит т.н. принцип Ле Шателье: химическое равновесие всегда смещается в сторону, противоположную приложенному воздействию. Рассмотрим свойства А и Б буферных систем.
А. Независимость рН буферных растворов от их концентрации выводится из уравнения Хендерсона-Хассельбальха: рН = рК1 +lg[HCO3-]/[CO2]. Тогда при разных концентрациях НСО3- и СО2 их отношение [HCO3-]/[CO2] может быть неизменным. Так, например, [HCO3-]/[CО2] = 20/8 = 10/4 = 5/2 = 2,5/1 = 0,5/0,2 = 2,5, - т.е. разные воды, отличающиеся значением карбонатной «жесткости» dКН и содержанием СО2, но содержащие их в одинаковой пропорции, будут иметь одинаковое значение показателя рН (см.также гл.2). Уверенно отличаться такие воды будут по своей буферной емкости: чем выше концентрация компонентов буферной системы, тем больше ее буферная емкость и наоборот.
Аквариумисты сталкиваются с данным свойством буферных систем обычно в периоды весеннего и осеннего паводка, если станции водозабора снабжаются поверхностной, а не артезианской водой. В такие периоды буферная емкость воды может уменьшаться настолько, что некоторые виды рыб не выдерживают традиционной плотной посадки. Тогда начинают появляться истории о загадочных болезнях, выкосивших например, скалярий, или меченосцев и против которых бессильны все лекарства.
Б. Можно говорить о трех буферных системах аквариумной воды, каждая из которых устойчива в своем диапазоне рН:
1. рН<8,3 СО2/НСО3- гидрокарбонатный буфер
2. рН=8,3 НСО3- гидрокарбонатный буфер
3. рН>8,3 НСО3-/СО3-- карбонатный буфер.
Рассмотрим свойсво Б в двух вариантах: вар. Б1 - при возрастании содержания СО2 и вар. Б2 – при уменьшении его содержания.
Б1. Концентрация СО2 увеличивается (плотная посадка, очень старая вода, перекорм).
Кислотные свойства СО2 проявляются в образовании ионов водорода Н+ при взаимодействии его с водой: СО2+Н2О→Н++НСО3-. Тогда увеличение концентрации СО2 равносильно увеличению концентрации ионов водорода Н+. Согласно принципа Ле Шателье это приведет к нейтрализации Н+. В этом случае буферные системы работают следующим образом.
Карбонатный буфер 3: при наличии карбонатного грунта ионы водорода будут поглощаться присутствующими в воде карбонатами: Н++СО3--→НСО3-. Следствием этой реакции будет растворение СаСО3 грунта (см. выше).
Гидрокарбонатный буфер 1 – 2: по реакции Н++НСО3-→CO2↑+Н2О. Стабильность рН будет достигнута за счет уменьшения карбонатной «жесткости» dКН, а удаление образующегося СО2 – либо за счет фотосинтеза, либо за счет диффузии его в воздух (при надлежащей аэрации).
Если источник избытка СО2 не будет устранен, то при уменьшении значения dКН вдвое от исходного, рН воды начнет понижаться при сопутствующем падении буферной емкости и увеличении общей жесткости. Когда величина показателя рН уменьшится на 1 единицу, емкость буферной системы будет исчерпана. При значении рН=6,5 содержание оставшихся гидрокарбонатов [HCO3-]=[CO2], а при рН<6 гидрокарбонаты будут присутствовать лишь в виде следа.
В итоге стабильность рН будет оплачена ценой понижения dКН, увеличения dGH и расходования буферной емкости воды. Такая вода уже будет сильно отличаться от природной (см. выше) и не всякая рыба сможет в ней выжить. В аквариумной практике принято считать нижней границей нормы количество гидрокарбонатов, соответствующее 4°dКН. Можно добавить, что для ряда видов аквариумных рыб (живородки, скалярии, атерины и др.) понижение карбонатной «жесткости» ниже 2°dКН может закончится трагично. Но в то же время, многие мелкие харациновые, расборы, радужницы такую воду переносят.
Б2. Противоположные процессы – подщелачивание воды вследствие уменьшения содержания СО2 в аквариуме ниже равновесного - возможны либо при активном фотосинтезе растений, либо при искусственном внесении в воду гидрокарбонатов в виде пищевой соды – NаНСО3. Тогда, согласно принципу Ле Шателье, это приведет к следующему противодействию со стороны буферных систем аквариумной воды.
Гидрокарбонатный буфер 1: стабильность рН будет удерживаться за счет диссоциации гидрокарбонатов: НСО3-→Н++СО3--. Тогда вслед за понижением содержания
СО2, будет пропорционально понижаться и количество гидрокарбонатов, а значение отношения [НСО3-]/[CO2] сохраняться постоянным (см. свойство А, уравнение Хендерсона-Хассельбальха). При падении содержания углекислоты менее 0,5[CO2]р, значение показателя рН начнет увеличиваться и может возрасти до рН=8,3. По достижении этого значения, гидрокарбонатный буфер 1 свои возможности исчерпывает, поскольку в такой воде СО2 практически отсутствует.
Гидрокарбонатный буфер 2 удерживает значение рН=8,3. Эта цифра следует из формулы [Н+]=√К1К2, где К1 и К2 – 1 и 2-ая константы диссоциации угольной кислоты (см. выше). Тогда:
рН = -lg√К1К2 = -lg√(4•10-7)(5,6•10-11) = 8,3
Т.е. значение рН растворов любых гидрокарбонатов постоянно, не превышает рН=8,3 и является следствием самой химической природы этих веществ.
В отсутствие СО2 гидрокарбонаты разлагаются по уравнению:
НСО3- →СО2+ОН-, подщелачивая воду и выделяя СО2, который потребляют растения. Но, тот же гидрокарбонат нейтрализует ОН- по схеме: НСО3-→СО3--+Н+; и Н++ОН-→Н2О. Поэтому значение показателя рН будет сохраняться стабильным, что отражает суммарное уравнение:
2НСО3-→СО3--+СО2+Н2О
Стабильность рН достигается опять же за счет уменьшения количества гидрокарбонатов, т.е. за счет понижения буферной емкости воды. Однако аквариумный тест dКН это уменьшение не чувствует в силу особенностей самого метода анализа.
Поскольку гидрокарбонат-ион обладает способностью к диссоциации как по кислотному, так и по основному типу, т.е: НСО3- →Н++СО3--и НСО3- →ОН-+СО2, то карбонатная «жесткость» dКН (содержание гидрокарбонатов), также является буферной системой.
Искусственное внесение в воду гидрокарбонатов (обычно в виде пищевой соды) иногда практикуется при содержании цихлид из Великих Африканских озер и в морской аквариумистике. При этом реализуются две стратегии: увеличение буферной емкости аквариумной воды и повышение значения показателя рН до 8,3.
Если количество СО2 в аквариумной воде будет уменьшаться и далее, то при падении его содержания вдвое, по сравнению с равновесным, рН воды начнет возрастать. По превышении показателем рН значения рН=8,3, углекислый газ из воды исчезает, и неорганический углерод представлен только гидрокарбонатами и карбонатами.
Карбонатный буфер 3. По превышении карбонатами концентрации, соответствующей произведению растворимости [CO3--]=ПРСаСО3/[Cа++], в воде начнут образовываться кристаллы СаСО3. Поскольку основным и единственным потребителем СО2 в пресноводном аквариуме являются водные растения, то рассматриваемые процессы происходят преимущественно на поверхности зеленого листа. При возрастании рН>8,3 поверхность зрелых листьев начнет покрываться известковой коркой, которая является замечательным субстратом для роста водорослей. Связывая карбонаты СО3--, образующийся СаСО3 также поддерживает стабильность рН. Однако в отсутствие ионов Са++ (в очень мягкой воде), при активном фотосинтезе рост концентрации карбонатов будет повышать значение показателя рН вследствие гидролиза карбонатов: СО3--+Н2О→ОН-+НСО3-.
При увеличении значения показателя рН на 1 единицу, по сравнению с исходным, буферная емкость воды будет исчерпана, и при продолжающемся падении содержания СО2, значение показателя рН может быстро повыситься до рискованного рН>8,5. В итоге падение содержания СО2 в аквариумной воде приведет к росту значения показателя рН при некотором уменьшении общей жесткости. В такой воде (также сильно неравновесной, как и в варианте Б1) весьма дискомфортно будут себя чувствовать многие мягководные рыбы.
Таким образом карбонатная буферная система воды объединяет в себе традиционные аквариумные гидрохимические параметры: жесткость общую и карбонатную, рН, а также содержание СО2. В ряду dGH – pH - dKH – CO2самым консервативным параметром является dGH, а самым изменчивым – СО2. По степени изменения dGH, pH и особенно dKH по сравнению с отстоянной, проаэрированной водопроводной водой можно судить о степени напряженности процессов дыхания и фотосинтеза в аквариуме. Исчерпание буферной емкости аквариумной воды как в ту, так и в другую сторону, настолько изменяет ее способность поглощать СО2, что именно это свойство зачастую превращает ее в сильно неравновесную по содержанию СО2 и кардинально отличает от природной. Изменение способности аквариумной воды поглощать выдыхаемый рыбами СО2, может превышать физиологические возможности организма рыб по его выведению. Поскольку это отражается на здоровье рыбного населения аквариума, то следует познакомиться с особенностями физиологического действия СО2 на организм рыб.
© Александр Яночкин, 2005 г.© Аква Лого, 2005 г.
(Продолжение - Часть 2 >>)
Поля, отмеченные знаком *, обязательны для заполнения.
www.aqualogo.ru
Как получить и собрать углекислый газ? Доказать опытным путем наличие этого газа
кусочек мрамора + соляная кислота - в пробирке. CaCO3 + 2HCl =CaCl2 + CO2 + h3O В эту пробирку газоотводную трубку, другой конец трубки в другую пробирку, в которой будешь собирать углекислый газ. Доказательство: 1)известковая вода Са (ОН) 2, тогда идет реакция: CO2 + Ca(OH)2 =CaCO3 + h3O . Карбонат кальция выпадает в осадок (белый) поэтому качественная реакция: помутнение известковой воды. 2)Углекислый газ хорошо растворяется в воде, при растворении образуется угольная кислота, поэтому, если его пропустить через воду, а потом в воду добавить лакмус, то лакмус из фиолетового станет красным (т. к. кислая среда) А вообще в лабораториях получают CO2 в аппаратах Киппа или приборе для получения газов
В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит) . Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве закачивается в баллоны. В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.
Кусочек мрамора + соляная кислота - в пробирке. CaCO3 + 2HCl =CaCl2 + CO2 + h3O В эту пробирку газоотводную трубку, другой конец трубки в другую пробирку, в которой будешь собирать углекислый газ. Доказательство: 1)известковая вода Са (ОН) 2, тогда идет реакция: CO2 + Ca(OH)2 =CaCO3 + h3O . Карбонат кальция выпадает в осадок (белый) поэтому качественная реакция: помутнение известковой воды. 2)Углекислый газ хорошо растворяется в воде, при растворении образуется угольная кислота, поэтому, если его пропустить через воду, а потом в воду добавить лакмус, то лакмус из фиолетового станет красным (т. к. кислая среда) А вообще в лабораториях получают CO2 в аппаратах Киппа или приборе для получения газов
как взять газ из скважины для лаборатории
touch.otvet.mail.ru
Угольная кислота, вообще, существует, или это всё-таки углекислый газ и вода?
Да-да-да!! ! Обычная газировка! Это и есть раствор угольной кислоты. Если не веришь - оставь в ней на ночь кусочек мяса или колбасы. В советское время так доказывалась вредность Пепси-колы. Мол вот что она делает с вашими желудками. Ну а если серьезно, - "Спрайт" смесь угольной и лимонной кислот - коктейль на подобии Царской водки, - растворяет накипь и используется автомобилистами для промывки системы охлаждения ДВС. :)
она очень нестабильна. . Раз есть ионы водорода и CO_3, значит есть и кислота..
Да, существует, но она очень нестойкая
cуществует только "на бумаге"
Существует Н2SО3: <a rel="nofollow" href="http://ru.wikipedia.org/wiki/Угольная_кислота" target="_blank">http://ru.wikipedia.org/wiki/Угольная_кислота</a>
как химический элемент - нет
Существует, только очень слабая, и в растворе равновесие сильно смещено в сторону углекислого газа и воды. Ты вообще знаешь, что такое химическое равновесие?
Раз существуют карбонаты (та же сода, мел мрамор) , кислота просто обязана существовать. Другое дело - в каком виде и при каких условиях. В водном растворе - при комнатной температуре, при очень низких температурах - нет особых проблем и в чистом виде получить. А что касается растворимости газов - ну твёрдый сахар, растворенный в чае ведь можете себе представить? А нашатырный спирт, который является раствором аммиака в воде? А растворенный в воде кислород? А он там есть, иначе рыбки все как одна сдохли бы.. . Вообще вопрос настораживает: в США для воды в школьной программе оставили два агрегатных состояния - жидкое и твердое. Мотивируют тем, что неграм трудно себе представить газообразную воду, а вот белым - запросто. Неполиткорректно получается.. . Неужели и у нас к чему-то похожему движется?
о том что газ может смешиваться с жидкостью молчаливо голосуют рыбы своим существованием - они дышат кислородом, растворимым в воде. Представить это не сложно, молекулы газа распределяются между молекулами воды, чему способствует атмосферное или иное давление, а также полярность молекул растворителя и растворяемого газа. Относительно угольной кислоты о реальности её существования вам подскажет собственный язык, когда пьете газировку, кисловатый привкус - опознавательный знак ионов Н+
Неужели ты не знаешь про газированную воду ? Молекулы угольной кислоты существуют в равновесии с водой и СО2, но при нормальных условиях её не выделить.
touch.otvet.mail.ru
Углекислый газ и карбонатная система воды (часть вторая)
(<< Начало - Часть 1)
ОГЛАВЛЕНИЕ
6. СО2 И ФИЗИОЛОГИЯ ДЫХАНИЯ АКВАРИУМНЫХ РЫБ
Подавляющему большинству свободноживущих многоклеточных животных для дыхания необходим кислород. С другой стороны также жизненно необходимо выведение из организма образующегося углекислого газа. Исполнение и сопряжение этих процессов составляют сущность т.н. внешнего дыхания. В ракурсе нашей темы важны два аспекта. Во-первых, доставку кислорода и выведение небезопасных продуктов метаболизма рыб выполняет система красной крови – эритроциты и плазма. Во-вторых, рыбы имеют замкнутую систему кровообращения, или систему кровообращения с высоким давлением. В таких системах органы и ткани получают необходимое количество крови не только в зависимости от интенсивности своей жизнедеятельности, но и в зависимости от состояния самих сосудов. Рассмотрим это несколько подробнее.
Транспорт газов в организме рыб. Основную часть работы, связанную с обменом газов в организме, т.е. снабжение кислородом и удаление углекислого газа, выполняет система красной крови: плазма и эритроциты. Как известно, гемоглобин (Нb) эритроцитов обладает способностью обратимо связывать кислород: Нb+О2↔НbО2. Доля связанного гемоглобина (оксигемоглобина, HbО2) зависит от содержания кислорода в среде, окружающей эритроциты, т.е. в плазме. Тогда, казалось бы, одной разницы по содержанию кислорода в жаберных капиллярах и капиллярах тканей вполне достаточно для выполнения гемоглобином своей кислород-транспортной функции. Однако, ввиду особой важности задачи снабжения кислородом дышащих тканей, эволюция сформировала множество механизмов, обеспечивающих тонкую зависимость свойств гемоглобина крови как от экологических, так и от физиологических условий. Во-первых, эритроциты содержат несколько типов гемоглобинов, различающихся по своим свойствам. Во-вторых, гемоглобин по сути является аллостерическим ферментом, т.е. эффективность реакции Hb+O2-HbO2 кроме содержания кислорода, регулируется множеством других факторов, среди которых особое значение имеют концентрации углекислого газа и ионов водорода.
Среда с высоким содержанием СО2 (капилляры активно функционирующих тканей) усиливает, облегчает диссоциацию HbO2, что приводит к более полной отдаче кислорода, «залповой разрядке» HbO2, по сравнению с таковой в неактивных тканях. Такое влияние СО2 на отдачу гемоглобином кислорода известно как эффект Бора. Считается, что у рыб эффект Бора более выражен, чем у наземных позвоночных.
Обеспечив ткани кислородом, кровь должна выполнить и другую часть своей работы – удалить небезопасные продукты метаболизма, в том числе СО2, от работающих тканей. Скорость его образования в активно работающих тканях превышает емкость буферных систем крови и может привести к понижению ее рН. Однако стабильность рН внутренней среды организма является основой фундаментального понятия гомеостаза, сформулированного К. Бернаром: постоянство внутренней среды организма является основой независимой жизни. Установлено, что для рыб изменение рН крови в ту, или другую сторону более, чем на 0,5 единицы смертельно. В основе механизма выведения СО2 при постоянном значении показателя рН лежат процессы, описываемые уже известным нам уравнением Хендерсона-Хассельбальха:
рН = рК1+lg[HCO3-]/[CO2]
Т.е., СО2 переводится в НСО3-; при этом отношение [HCO3-]/[CO2] сохраняется постоянным при увеличении концентрации его компонентов, и значение рН не изменяется. Этот процесс происходит в эритроцитах при участии цинк-содержащего фермента карбангидразы. СО2, как и О2, являясь мелкой, не несущей заряда молекулой, свободно диффундирует через клеточные мембраны эритроцита по градиенту концентрации. В рабочих капиллярах это направление плазма – эритроцит. В эритроците карбангидраза многократно ускоряет реакцию СО2+Н2О→Н++НСО3-, идущую в свободной воде весьма слабо (К1=4•10-7). Накапливающийся в эритроцитах НСО3- переводится в плазму в обмен на хлорид-ион Cl- благодаря работе ионных каналов. Это обеспечивает свободную работу карбангидразы, но приводит к перераспределению хлорид-ионов из плазмы в эритроцит – т.н. хлоридный сдвиг. Остающийся в эритроците ион водорода Н+ не изменяет рН его цитоплазмы благодаря буферным свойствам самого гемоглобина: обладая менее выраженными по сравнению с HbO2 кислотными свойствами, Hb связывает образующийся в результате работы карбангидразы ион водорода – т.н. эффект Холдейна.
В капиллярах жаберного аппарата происходят процессы, обратные рассмотренным. Углекислый газ покидает плазу крови по градиенту концентрации в направлении плазма – окружающая среда. Несущий заряд гидрокарбонат-ион НСО3-, в отличие от СО2, не способен проникать через клеточные мембраны жаберного эпителия. Но в соответствии с уравненим Хендерсона-Хассельбальха, изменение отношения НСО3-/СО2 при снижении концентрации СО2 приводит к разложению гидрокарбонатов по реакции: НСО3- → СО2+ОН-и СО2 свободно диффундирует в воду.
Оставшийся ОН- нейтрализуется освободившимися после образования НbО2 ионами водорода Н+ - процесс, обратный эффекту Холдейна. Жаберный эпителий, как и эритроциты, также обладает повышенным содержанием карбангидразы, но ее роль в процессе обмена СО2 не совсем ясна. Более вероятным представляется сопряжение работы карбангидразы с механизмами удаления аммония Nh5+ и Н+, а также поглощением ионов Na+ и Cl-, протекающими у рыб в жабрах. Приблизительно таким образом работают механизмы обмена газов в естественных условиях, т.е. в воде, находящейся в состоянии, близком к газовому равновесию и содержащей мало углекислого газа.
Низкое содержание СО2 в большинстве природных вод и постоянство направления градиента концентрации углекислого газа в направлении организм – среда, дало основание некоторым физиологам для радикальной формулировки: рыбы живут в углекислотном вакууме. Именно поэтому рыбы обладают минимальной среди всех позвоночных буферной емкостью крови. К сожалению это не всегда так даже в природе, например, в тропических водоемах с кислой водой, рН которой, как мы убедились, зависит от содержания СО2. В этих случаях рассмотренный выше эффект Бора мог бы сыграть отрицательную роль. Но природа решила это противоречие весьма просто: живущие в таких водах рыбы не обладают выраженным эффектом Бора и их гемоглобин способен к транспорту кислорода даже при высоком содержании СО2 в крови. Это относится к большинству успешно освоенных аквариумистикой мелких харациновых, карповых, радужницам и др., о чем упоминалось выше. Для аквариумиста важно, что все они удовлетворительно переносят плотные посадки (т.н. «плотные» рыбы) и прекрасно чувствуют себя в слабощелочной воде. Тем не менее, кислые природные воды еще прячут в себе немало «запретных плодов»: взять хотя бы дискуса Хеккеля - Symphysodon discus Haeckel,1840…
В отличие от выше упомянутых, многие обитатели текущих и слабощелочных вод обладают гемоглобином, чувствительным к эффекту Бора, что при содержании их в аквариумах может привести к проблемам. При высоком содержании СО2 в воде аквариума, низких значениях рН и dКН имеет место следующее противоречие. Содержание кислорода в воде достаточно для насыщения гемоглобина кислородом в жабрах. Но остаточное высокое содержание СО2 в плазме крови приводит к уменьшению доли HbO2 еще в магистральных артериях. При «залповой разрядке» такого оксигемоглобина в капиллярах активно работающих тканей, высвобождаемого кислорода оказывается уже недостаточно и развивается тканевая гипоксия. При этом жаберные рецепторы сигнализируют в дыхательный центр о нормальном насыщении крови кислородом, а от работающих тканей поступает диаметрально противоположная информация. Чтобы понять, что может происходить с организмом рыб в такой ситуации, необходимо рассмотреть особенности организации их сосудистого русла.
Кровеносная система рыб. В замкнутой системе кровообращения каждый тип сосудов выполняет свою определенную физиологическую функцию. Кровь движется по сосудам от центра – сердца, к периферии – капиллярам. Сердце, являясь источником движения, создает необходимые для перемещения крови импульс и давление. Кровяное давление рыб четко кореллирует с частотой сердечных сокращений. Аорта и крупные магистральные артерии, благодаря эластичности своих стенок, сглаживают пульсовую волну и поддерживают скорость кровотока. Более мелкие артериолы, путем изменения своего просвета за счет тонуса гладкомышечной оболочки, регулируют кровоснабжение различных органов. Прекапиллярные артериолы определяют количество работающих в каждом органе капилляров, опять же за счет изменения своего просвета.
В собственно капиллярах происходит обмен жидкостей и газов между кровью и тканевой жидкостью, непосредственно омывающей элементы тканей. Стенки капилляров не имеют мышечных элементов, поэтому величина их просвета, а значит и возможность продвижения по ним крови, зависит только от давления крови в артериолах. Cуммарное сечение капилляров почти в 1000 раз больше сечения аорты (данные для млекопитающих). Объем капиллярного ложа составляет большую часть объема всего сосудистого русла и многократно превышает объем имеющийся крови. Поэтому для нормальной жизнедеятельности организма очень важна физиологическая управляемость системы кровообращения.
Венозная часть сердечно-сосудистой системы является емкостным, коллекторным звеном. Скорость кровотока в венах значительно ниже, чем в артериях. Вены могут вмещать до 80% крови, способствуя ее перераспределению в организме. Наиболее емкими являются вены брюшной полости, селезенки и кожи, составляя т.н. депо крови в организме. В состоянии покоя организм депонирует до 50% своей крови, да и в состоянии активности определенная часть крови всегда находится в депо. Физиологические механизмы депонирования крови и ее мобилизации из депо специфичны и к сожалению мало изучены даже у человека. Емкость венозной части сосудистого русла определяет очень важную величину венозного возврата крови к сердцу. При недостаточном венозном возврате крови возможна рефлекторная остановка сердца. Недостаточность венозного возврата крови к сердцу возможна, например, при расстройствах кровообращения, связанных с обширными травмами, некрозами, действием раздражающих кожу веществ. В основе этого явления лежит неуправляемое расширение капилляров, что приводит к падению кровяного давления и недостаточному венозному возврату.
Организм всегда обходится только частью имеющейся крови, снабжая ей лишь постоянно работающие (мозг, сердце, почки, жабры) и активно функционирующие структуры. В основе этого лежит т.н. принцип перемежающейся активности функционирующих структур: органы никогда не работают все вместе, а только поочередно и частично (Крыжановский Г.Н.). Из него же вытекает необходимость постоянного перераспределения крови и ее частичное депонирование.
Среди регуляторов кровоснабжения органов и тканей организма важное значение принадлежит углекислому газу. Но если СО2 активно функционирующих структур является физиологическим стимулятором их местного кровоснабжения, то тотальное повышение уровня СО2 крови вызывает ее перераспределение по механизму стресс-реакции. При этом происходит т.н. централизация кровообращения: продолжают активно снабжаться кровью только постоянно работающие органы (см. выше), а остальные оказываются на «голодном пайке» за счет сокращения прекапиллярных артериол. В результате кровь циркулирует только по магистральным сосудам и постоянно работающим органам – сердцу, мозгу, почкам, жабрам. Понятно, что такое состояние долго продолжаться не может, и если содержание СО2 не уменьшится, организм отвечает формированием патологических процессов. Их конкретное проявление группоспецифично, но чаще всего это локальные кожные некрозы и нарушения обмена жидкости.
Так, у живородок, атерин наиболее, уязвима кожа. На теле, чаще всего возле спинного плавника или хвоста, появляются белые пятно, или сетка. Их размер и окраска увеличивается и усиливается. В течение 1-2 суток рыба погибает. По внешним признакам заболевание сравнивают с химическим ожогом (Р. Бауэр), или описывают как флексибактериоз, колумнариоз (Дж. Баслер). Антимикробные препараты малоэффективны. Даже по перенесении в другую воду, заболевшие рыбы погибают; выживают только экземпляры, у которых кожа не была повреждена. Молодь гораздо чувствительнее взрослых.
У некоторых цихлид – скалярий, акар, псевдотрофеусов – длительная централизация кровообращения приводит к застою крови в воротной вене печени. Вследствие этого увеличивается давление в капиллярах органов брюшной полости, что приводит к экссудации жидкости в брюшную полость и развитию асцита - водянки брюшной полости. Антимикробные препараты опять же малоэффективны, но нормализация условий содержания часто позволяет добиться положительных результатов. При этом проявляется одна из особенностей действия углекислого газа на организм: длительность периода восстановления близка к длительности периода воздействия (Массарыгин А.Г., 1973).
Золотые рыбы как бы объединяют в себе оба предыдущих типа. Но в отличие от живородок, их кожные реакции в силу возможности более длительного развития процесса, формируют несколько иную клиническую картину: локальные очаги кожного некроза отторгаются и образуются открытые, глубокие трофические язвы. Как и у живородок, их терапия также зачастую безуспешна.
Следует обратить внимание, что СО2 в нормальных условиях является естественным физиологическим регулятором кровоснабжения органов. Поэтому его недостаток также может быть опасен, особенно для молоди. Но такие состояния легче контролировать, просто придерживаясь рекомендуемых значений показателя рН. Так, например, личинки звездчатого анциструса (Ancistrus leucostictus), черного ножа (Apteronotus albifrons) при рН>7,5 не переходят на экзогенное питание и даже при наличии стартового корма пассивно лежат на дне, погибая от голода. Как известно, СО2 для молоди является мощным стимулятором двигательной активности. Информации по рекомендуемым значениям dКН, рН и др. в аквариумной литературе довольно много.
Подытожить разговор о СО2-системе можно с экологической точки зрения, поскольку грамотно устроенный декоративный аквариум все же является моделью экологической системы. В течение жизненного цикла организм рыб встречается с разнообразными экологическими факторами. Безусловно СО2 и рН относятся к экологическим факторам, являясь также и факторами лимитирующими, поскольку и СО2, и рН влияют на выживаемость рыб. Диапазон колебаний содержания СО2 в среде, совместимый с жизнью рыб не превышают 10 раз. Так например, если для многих живородок содержание СО2 1-2мг/л является комфортным, то при 10-15мг/л СО2 о долгой и «счастливой» жизни этих рыб не может быть и речи. В то же время, колебания концентраций многих ионов (для них биологические мембраны непроницаемы) большинство рыб выдерживают в диапазоне до 100 крат (2 порядка), и являются относительно этих факторов эврибионтами. Так, например, минимальная жесткость воды, согласно ПРСаСО3 составляет 0,35°dGH. Такое значение общей жесткости весьма рекомендуемо для размножения красных неонов (Cheirodon axelrodi). Но малек этого вида прекрасно себя чувствует и в воде с общей жесткостью 30°dGH. То же можно сказать и о гидрокарбонатах. Однако возможны и исключения. Так, для большинства рыб физиологический диапазон колебаний значения кислотности воды составляет 2 порядка, или 2 единицы рН: рН 6,0-8,0. Но есть и виды, диапазон устойчивости (толерантности) которых не превышает 10 крат – 1 единицы рН. К таковым относятся некоторые эндемики Танганьики, Амазонии (Symphysodon discus), являющиеся т.н. стенобионтными видами. Можно утверждать, что стенобионты не выдерживают более 10-кратного диапазона колебаний экологического гидрохимического фактора и стенобионтными по отношению к СО2 являются многие аквариумные рыбы.
Таким образом, действие углекислоты на рыб полностью укладывается в рамки закона толерантности Шелфорда: на организм отрицательно влияет как избыток, так и недостаток СО2 и для комфортного самочувствия неодходимо его присутствие в «стандартных» количествах, определяемых dКН и газовым равновесием.
7.МИНИ-ПРАКТИКУМ
Аквариумисту всегда есть смысл знать состояние буферной системы воды своего аквариума. К счастью рынок предоставляет для этого широкий ассортимент недорогих гидрохимических тестов, как зарубежных, так и отечественных. На практике, при расчетах по приведенным выше уравнениям, наибольшие затруднения вызывает совмещение единиц измерения результатов теста с требованиями химии. Для решения уравнений необходимо представить концентрации измеренных параметров в молярной форме, тогда как тесты показывают значение жесткости (общей и карбонатной) – в градусах немецких, а углекислого газа – в мг/л. Тогда для расчета молярной концентрации СО2 напомним формулу: [СО2]=z/44 (10-3М, или mM), где z мг/л – измеренная с помощью СО2-теста концентрация углекислого газа.
Для пересчета единиц измерения жесткости можно предложить следующие формулы:
[Ca++] = 0,18 (x°dGH) (10-3M, или mM)[HCO3-] = 0,36(y°dKH) (10-3M, или mM)
где x° и y° – соответственно общая и карбонатная жесткость, измеренная в немецких градусах.
В качестве примера рассмотрим: 1) воду из-под крана; 2) ту же воду, отстоянную в течение суток; 3) воду из старого аквариума с плотной посадкой рыбы, но почти без растений; 4) утреннюю воду из старого аквариума без аэрации, с большим количеством растений, но малым количеством рыб; 5) ту же воду вечером. Для удобства результаты измерений собраны в таблицу 1:
№ примера |
dGH |
dKH |
СО2, мг/л |
1 |
10 |
7 |
26 |
2 |
10 |
8 |
4 |
3 |
17 |
2 |
6 |
4 |
11 |
8 |
12 |
5 |
11 |
10 |
10 |
После преобразований по приведенным выше формулам, результаты измерений представлены в таблице 2:
№ примера |
[Ca++] |
[HCO3-] |
[CО2]общ |
[CО2]р |
1 |
1,8 |
2,5 |
0,6 |
0,3 |
2 |
1,8 |
2,9 |
0,1 |
0,4 |
3 |
3 |
0,7 |
0,1 |
0,05 |
4 |
2,0 |
2,9 |
0,3 |
0,5 |
5 |
2,2 |
3,6 |
0,25 |
0,8 |
Значение равновесной углекислоты [CO2]р рассчитывалось по формуле:
[CО2]p=[Ca++][HCO3-]2/34,3 (см. гл. 3)
Рассмотрим полученные результаты.
1). Вода из-под крана в зависимости от региона, сезона и пр., может содержать от 20 до 40мг/л СО2, что превышает ее равновесное значение в два и более раза. Даже по абсолютному содержанию углекислоты (более 15мг/л), такая вода непригодна для жизни большинства видов аквариумных рыб, не считая присутствия хлора, хлорамина, железа и прочих «благ цивилизации». Предлагаемые рынком кондиционеры для воды не устраняют избытка СО2, поэтому даже при их использовании, подмены воды следует производить осторожно (лучше меньше, но чаще), с учетом видового состава рыбного населения аквариума.
2). Данный пример демонстрирует «мобильность» СО2 и сравнительно низкий уровень [СО2]общ при состоянии воды, приближающемся к газовому равновесию. Сравнительно низкие остаточные количества углекислого газа в отстоянной водопроводной воде определяются его содержанием в воздухе (з-н Генри- см. гл.2). Поскольку в такой воде [CO2]общ<[CО2]р, она склонна к отложению известняка СаСО3 при разложении гидрокарбонатов: Са+++2НСО3->СаСО3v+СО2^+Н2О. Тогда на дне и стенках посуды образуется известковая корка, часто с примесью железа. При этом кислотность воды достигает рН 8,0-8,2, с тенденцией к возрастанию при увеличении продолжительности отстаивания. В очень жесткой воде кислотность может достигать значений рН>8,5. В последнем случае при массированной подмене воды могут возникнуть проблемы с т.н. мягководной рыбой.
3). Следует обратить внимание, что в этом примере значение карбонатной «жесткости» (2°dKH) меньше рекомендуемого минимума (4°dKH). Поскольку [CO2]общ>[CO2]р, такая вода будет растворять известняк грунта, поэтому общая жесткость воды в данном примере превышает жесткость воды из водопровода. В воде с таким низким значением карбонатной «жесткости» следует ожидать проблем со здоровьем многих видов живородок, атерин, танганийских цихлид, скалярий и др.. Повысить уровень карбонатной «жесткости» можно частыми подменами воды (до 3-х и более раз в неделю), препаратом «рН-uр», или с помощью пищевой соды NaHCО3. Соду можно добавлять из расчета половины чайной ложки на 100 литров воды, контролируя значение dКН с помощью соответсвующего теста. Примеры 2 и 3 иллюстрируют положения, обсуждаемые в главах 3 и 4.
4) и 5). Из данных примеров видно влияние фотосинтеза водных растений на состояние углекислотного равновесия аквариумной воды. Несмотря на сходство с примером 2 ([CO2]общ<[CO2]р), отложения СаСО3 не происходит, т.к. этому препятствуют органические вещества, содержащиеся в воде аквариума. Сильно заиленный грунт поставляет в воду значительные количества СО2(10-12мг/л), но поскольку
[СО2 ]общ<[ СО2 ]р, рост растений не очень активный. Любопытно, что соотношение обеих форм угольной кислоты не изменяется даже за ночь. Высокое значение dKH обеспечивает устойчивость буферной системы воды и удовлетворительное самочувствие видов рыб, мало чувствительных к углекислому газу – харациновых, меланотений и некоторых других. В то же время отсутствие продувки поддерживает стабильно высокий уровень содержания СО2. При этом карбонатная «жесткость» dKH остается наиболее информативным и удобным параметром в оценке буферной емкости аквариумной воды. Несколько повышенная общая жесткость связана с использованием в прошлом углекислотной подкормки растений.
В заключении хотелось бы выразить благодарность моим товарищам: Бугайцу С., Мухину Б., Опаленко М., Телегину А. и Хмелевскому Ю., взявшим на себя труд по прочтению рукописи и благодаря поддержке и деловым замечаниям которых, данная работа увидела свет.
© Александр Яночкин, 2005 г.© Аква Лого, 2005 г.
8. ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА
1. Бауэр Р. Болезни аквариумных рыб. М.: Аквариум, 2000 – 176с.
2. Ввозная Н.Ф. Химия воды и микробиология. М.: Высш. школа, 1979 – 340с.
3. Зайчик А.Ш., Чурилов Л.П. Общая патофизиология. СПб., 2001 – 624с.
4. Кляшторин Л.Б. Водное дыхание и кислородные потребности рыб. М.: Легкая и пищевая промышленность, 1982 – 168с.
5. Корзюков Ю.А. Болезни аквариумных рыб. М.: Колос, 1979 – 175с.
6. Кочетов А.М. Декоративное рыбоводство. М.: Просвещение, 1991 – 384с.
7. Общий курс физиологии человека и животных. Кн.2. Физиология висцеральных систем. Под ред.Ноздрачева А.Д. и др.. М.: Высш.школа, 1982 – 528с.
8. Перельман А.И. Геохимия природных вод. М.: Наука,1982 – 154с.
9. Проссер Л., Браун Ф. Сравнительная физиология животных. М.: Мир, 1979 – 752с.
10. Скуг Д., Уэст Д. Основы аналитической химии. Т.1. М.: Мир, 1979 – 480с.
11. Смит Л.С. Введение в физиологию рыб. М.: Агропромиздат, 1986 – 168с.
12. Спотт С. Содержание рыбы в замкнутых системах. М.: Легкая и пищевая промышленность, 1983 - 192с.
Поля, отмеченные знаком *, обязательны для заполнения.
www.aqualogo.ru
Почему с каждым годом мы все больше пьем бутилированной негазированной питьевой воды? Почему растет ее производство и продажи?Дело не в мировой моде на здоровый образ жизни, а, скорее, в растущем уровне информированности и образованности. Поэтому будет исторически справедливее, да и проще, вспомнить сначала о более давних и потому более привычных газированных напитках, и, оттолкнувшись от них, попытаться ответить на интересующие нас вопросы.Итак, в современных словарях и энциклопедиях газированные напитки определены как напитки, насыщенные углекислым газом, отличающиеся своеобразным приятным вкусом, освежающими свойствами и, так называемой, игристостью — интенсивным и продолжительным выделением пузырьков газа. Углекислый газ встречается и под другими названиями: СО2, двуокись углерода, диоксид углерода, бикарбонат.Степень насыщения газированных напитков углекислым газом бывает разной, но в Украине в технологических документах по производству напитков она регламентируется не более 10 г/л (1%). Газирование напитков производится либо механическим введением и растворением в жидкости технического углекислого газа (столовые питьевые воды, фруктовые напитки, акратофорное шампанское, шипучие вина), когда напитки газируют под давлением в специальных аппаратах; либо насыщением напитка естественным углекислым газом, выделяющимся при брожении (бутылочное шампанское, пиво, квас). К примеру, настоящий квас готовится из солода — биологически активного вещества проросших зерен; все самое ценное экстрагируется в квасное сусло, где в процессе молочнокислого брожения появляются еще и ферменты, помогающие переваривать и усваивать пищу. Т.е. налицо явная полезность довольно сложного процесса газирования натуральным углекислым газом в сравнении с технически бесхитростным насыщением напитков техническим СО2.
Газированные напитки, особенно охлажденные, быстрее и полнее утоляют жажду. Т.е., для утоления жажды человек выпивает меньше газированной питьевой воды, чем негазированной. И, на первый взгляд, из-за меньшего потребления газированной воды само газирование должно выглядеть для производителя непривлекательным.Однако сегодня в производстве напитков усиленно эксплуатируется основное коммерческое свойство углекислого газа — консервирующее (обеззараживающее, дезинфицирующее, антимикробное). Т.е. углекислый газ – это консервант – вещество, губительно действующее на живые микроорганизмы, присутствующие в питьевой бутилированной воде, которая никогда не является стерильной, также как и водопроводная вода. Напомню, что по действующему в Украине стандарту в 1мл питьевой воды разрешается присутствие 100 бактерий, а в 1л допускается даже наличие трех кишечных палочек. И тогда получается, что насыщение воды техническим углекислым газом экономически выгодно производителю и продавцу, т.к. газированием воды увеличиваются сроки ее хранения и, соответственно, упрощаются условия хранения, удлиняются сроки продажи.
Существуют, конечно же, оправданные случаи наличия углекислого газа в питьевой воде. Во-первых, напиток из лечебного минерального источника нельзя подвергать никакой специальной обработке, чтобы не уничтожить полезные для здоровья компоненты.
Во-вторых, минеральные воды обладают лечебными свойствами, в частности, благодаря растворенным в них природным газам, оказывающим на организм человека лечебное действие.В-третьих, именно имеющийся в минеральных водах природный углекислый газ в силу своего антимикробного действия позволяет им оставаться чистыми и сохранять свои лечебные свойства, несмотря на возможные загрязнения. К примеру, нарзан – углекислая гидрокарбонатно-сульфатная вода, — хорошо утоляет жажду, повышает аппетит и улучшает пищеварение. Но без рекомендации врача лечебные минеральные воды пить не следует.Также нередко газирование используют, чтобы избавить напиток от неприятного привкуса. Известны и национальные традиции потребления газированной воды. Например, шотландский напиток виски рекомендуют смешивать в определенных пропорциях с содовой водой – газированным напитком промышленного изготовления. Теперь пора вспомнить о свойствах СО2, небезразличных для здоровья человека. Углекислый газ изменяет водородный показатель (рН) продукта, определяющий характер химических и биологических процессов, происходящих в воде. В зависимости от величины рН меняется скорость биологических реакций, токсичность загрязняющих веществ и т. д. Для питьевых вод оптимальным считается уровень рН в диапазоне от 6,5 до 8,5 (по рекомендациям ВОЗ до 7), отклонение от которого может существенно отразиться на запахе, привкусе и внешнем виде воды да и на показателях безопасности, в целом.Медики на основе многолетних исследований и наблюдений определили противопоказания к употреблению газированной питьевой воды и других газированных напитков:
Нам, людям современным, необходимо знать, что в странах Европейского Союза, население которых однозначно предпочитает негазированную бутилированную питьевую воду, с успехом действует законодательный документ — Директива о качестве воды, предназначенной для употребления человеком. Цель этой Директивы – защита здоровья человека от вредного влияния любого загрязнения питьевой воды и обеспечение уверенности в том, что питьевая вода является здоровой и чистой. В этом документе дано следующее определение питьевой воды: «вода, предназначенная для употребления человеком, — это любая вода в ее природном виде или после обработки, предназначенная для питья, варки, приготовления еды или для других бытовых целей, независимо от ее происхождения и от того, доставляется ли она по водопроводной сети, цистернами, в бутылках или другой таре». Эта Директива разрешает использование углекислого газа в питьевой воде только в качестве консерванта и в количествах, не превышающих 0,4%. Все вышеперечисленное говорит о пользе негазированных питьевых напитков и, прежде всего, негазированной питьевой воды в сравнении с аналогичными газированными напитками. И если уж мы не имеем возможности питаться абсолютно натуральными продуктами, то давайте хотя бы пить физиологически полноценную воду, без ненужных искусственно введенных составляющих – консервантов, красителей, подсластителей, ароматизаторов и пр. |
bckspc.com
Газированная вода | Cooks - Повара Казахстана
Газированная вода (устар. «шипучие воды», просторечное — «газировка») —прохладительный напиток из минеральной или обычной ароматизированной воды, насыщенной углекислым газом.
Виды
Существует три вида газированной воды по уровню насыщения углекислым газом:
слабогазированная при уровне углекислого газа от 0,2 до 0,3 %;
среднегазированная — 0,3–0,4 %;
сильногазированная — более 0,4 % насыщения.
Производство
Газация происходит двумя способами:
Механическим — введение и насыщение жидкости диоксидом углерода: фруктовые и минеральные воды, газированные или шипучие вина и вода. При этом напитки газируются в специальных аппаратах — сифонах, сатураторах, акратофорах или металлических баках под давлением, предварительно охлаждая и выводя из жидкости воздух. Обычно напитки насыщают до 5—10 г/л. Газирование воды углекислым газом не обеззараживает её.
Химическим— напиток газируется углекислотой при брожении: пиво, бутылочное и акратофорное шампанское, игристые вина,сидр, хлебный квас, либо при взаимодействии кислоты и питьевой соды — зельтерская вода (она же «содовая»).
Альтернативные углекислоте газы
Производится и продаётся газированная вода, насыщенная либо смесью углекислого газа и закиси азота, либо кислородом.
История
Природная газированная вода известна с древнейших времён и использовалась в лечебных целях (Гиппократ посвятил этой воде целую главу своего труда и велел больным не только пить её, но и купаться в ней). В XVIII веке минеральную воду из источников начали разливать в бутылки и развозить по миру. Однако она стоила весьма дорого и к тому же быстро выдыхалась. Поэтому позже были предприняты попытки искусственно загазировать воду.
Первому создать газированную воду удалось английскому химику Джозефу Пристли в 1767 году. Это произошло после экспериментов с газом, выделяющимся при брожении в чанах пивоваренного завода. Далее швед Тоберн Бергман в 1770 году сконструировал аппарат, позволяющий под давлением, с помощью насоса, насыщать воду углекислыми пузырьками и назвал его сатуратором (от лат. saturo— насыщать).
Первым промышленное производство газированной воды начал Якоб Швепп. Он в 1783 году усовершенствовал сатуратор и создал промышленную установку для выпуска газированной воды. В начале XIX века Швепп для удешевления производства стал применять для газирования обычную пищевую соду и газированную воду стали называть «содовая». Новинка быстро распространилась по Англии(такой водой стали разбавлять крепкие алкогольные напитки) и её колониям, позволив Швеппу основать компанию «J.Schweppe&Co», от которой пошла торговая марка Schweppes.
В отличие от США, где газированная вода в основном продавалась разлитой в бутылки, в других странах было принято потреблять её из перезаправляемых сифонов — как маленьких домашних, так и больших, устанавливаемых в кафе и барах. Позже появились и уличные автоматы по продаже газированной воды. В дореволюционной России бутилированная вода считалась «господским» напитком, — её называли зельтерской (сельтерской), по названию минеральной воды, изначально бравшейся из источника Нидерзельтерс (Niederselters). Одним из производителей, например, был петербургский ресторатор Иван Излер в 30-х годах XIX века.
Во времена «сухого закона» в США газированные напитки заменяли (а иногда и маскировали) запрещённые тогда алкогольные напитки.
Потребление
Среднийамериканецвыпивает 180литров(вчетверо больше, чем в 50-е годы) газированной воды в год. Среднийроссиянин — 50 литров, среднийкитаец — 20 литров воды в год.
Из общего объёма производства безалкогольной продукции (в США, где в этой индустрии занято около 200 тыс. человек и производится товаров на 300 млрд долларов в год) газированные напитки составляют 73 %
Свойства углекислого газа в составе газированной воды
Углекислый газ достаточно хорошо растворяется в воде, так же как и другие газы, вступающие с ней в химическое взаимодействие:сероводород, диоксид серы,аммиаки др. Другие газы менее растворимы в воде. Углекислый газ используется как консервант и обозначается на упаковке под кодом Е290.
Влияние на здоровье
Согласно «Межотраслевым правилам по охране труда в литейном производстве» в литейных цехах следует предусматривать устройства для обеспечения работников (из расчета 4—5 л на человека в смену) подсоленной газированной водой, содержащей 0,5 % поваренной соли.
Чрезмерное увлечение сладкой газированной водой может увеличить вероятность ожирения или сахарного диабета, что показано в документальном фильме о вреде фаст-фуда «Двойная порция». В России и некоторых других странах введён запрет на торговлю любыми газированными напитками на территории школ.
Природная газированная вода.
Природные минеральные воды, благодаря растворенным в них природным газам, обладают лечебными свойствами, оказывающим на организм человека лечебное действие. Природный углекислый газ позволяет воде сохранять свои лечебные свойства, даже, несмотря на возможные загрязнения. Эта вода может быть слишком соленой или горькой, в этом случае углекислый газ несколько улучшает ее вкус и предупреждает развитие бактерий. Следует знать, что эта вода обладает лечебными свойствами, поэтому не следует пить ее постоянно, а лучше, в качестве питьевой воды, употреблять только природную негазированную воду. Напиток из лечебного минерального источника нельзя подвергать никакой специальной обработке, чтобы не уничтожать полезные для здоровья компоненты. Даже благодаря транспортировке, могут потеряться полезные свойства этой воды. Нарзан — хорошо утоляет жажду, повышает аппетит и улучшает пищеварение. Но без рекомендации врача лечебные минеральные воды пить не следует.
У природных минеральных вод есть и негативные побочные эффекты. Минеральная вода, добытая из артезианских источников, может содержать хлор, метан, радон и сероводород, которые не совсем полезны для человека. Чтобы избежать негативного воздействия на человека этих соединений, их удаляют, а потом насыщают углекислым газом искусственным путем. Врачи рекомендуют пить минеральную газированную воду детям (даже абсолютно здоровым), только после трех лет. Однако если ребенка беспокоят боли в животе, лучше пить такую воду без газа, для этого следует вылить воду в стакан и подождать пока пузырьки не исчезнут.
На заметку
Не следует пить газировку, если вы страдаете гастритами, ведь углекислый газ нарушает нормальную кислотность желудка, а газ, распирает его и мешает нормальной работе. Пузырьки газа негативно действуют на слизистую, поэтому людям, страдающим язвой, повышенной кислотностью и рядом других заболеваний желудка и кишечника, перед тем как пить воду, необходимо выпускать газ из бутылки. Также, углекислый газ изменяет водородный показатель (рН) воды (оптимальным считается уровень рН в диапазоне от 6,5 до 8,5), закисляет жидкие среды организма, а при длительном употреблении закисляется кровь, что создает условия для развития многих заболеваний. Кроме того, употребление сильно газированных напитков ведет к разрушению зубной эмали, которая выполняет защитную функцию для наших зубов. В результате, зубы становятся более чувствительными, менее прочными и реагируют на холодное, горячее и кислое. Стирание эмали приводит к возникновению кариеса и разрушению зубов.
cooks.kz