Ветроэнергетика в России,развитие технологии в ветроэнергетике. Ветровые электростанции в россии


применение крупнейших ВЭС, их эффективность и перспективы развития

уже прочитали: 365

Постоянно возрастающая потребность в электроэнергии вынуждает внимательнее присматриваться к дополнительным возможностям ее производства. Один из вариантов, доступный как для промышленного, так и частного воспроизводства электрического тока — .

В России этот метод используется редко и в мелких масштабах, но его возможности привлекательны, позволяют решать проблему с энергообеспечением самостоятельно. Рассмотрим перспективы этого направления и варианты его реализации на практике.

Развитие ветроэнергетики в России

Несмотря на большое количество ГЭС, действующих в России, есть немало населенных пунктов, не имеющих подключения к централизованным сетям. Выходом из положения являются дизельные электростанции, но они требуют топлива и ремонта. Как постоянный источник электроэнергии такой вариант затратен и несамостоятелен. Кроме того, мощность дизельной электростанции ограничена, из-за чего появление новых потребителей затруднено.

Использование альтернативных источников энергии в России развито слабо. Причиной такой ситуации являются:

  • энергетическая избыточность, присутствующая в стране в целом
  • отсутствие возможности самостоятельного решения вопроса у населения, особенно во времена СССР
  • недостаток инициативы и специальных знаний, препятствующий развитию дополнительных направлений энергетики

Одним из наиболее привлекательных направлений альтернативной энергетики является . Она имеет массу преимуществ, основным из которых следует считать неограниченность источника, независимость от времени суток или сезона. При этом, широкого распространения ветроэнергетика пока не получила, поскольку основной упор уже давно сделан на более производительную и удобную для России гидроэнергетику.

Использование энергии ветра до сих пор рассматривалась как интересный физический эксперимент, наглядное пособие для студентов ВУЗов.

Тем временем, жители других стран, не имеющие возможности для строительства ГЭС, успешно развивают ветроэнергетику и получают немалое количество энергии. Например, в Германии, которая лидирует по количеству выработки энергии ветрогенераторами в Европе, ежегодно производится около 45 Гвт электроэнергии, что составляет значительный процент от общей выработки.

Мнение эксперта

Специалист портала Energo.House

Другие страны Европы, расположенные на побережье Атлантики, успешно используют шельфовые ветроэлектростанции. Такая ситуация во многом вынужденная, возникшая из-за неимения других возможностей, но эффект от методики вполне реален и неоспорим.

Состояние и перспективы

имеет намного меньшую эффективность по сравнению с гидроэнергетикой. Стабильность и вырабатываемая мощность самого большого ветряка сильно уступают одному агрегату средней ГЭС.

География России, обилие крупных рек и удачный рельеф местности позволили создать массу гидроэлектростанций, обеспечивающих промышленность и население в достаточной степени.

Мнение эксперта

Специалист портала Energo.House

Россия считается энергоизбыточной страной, что свидетельствует о состоянии энергетики в целом.

При этом, уровень потребления электроэнергии постоянно возрастает. Имеющиеся мощности не готовы к скачкообразному повышению спроса, появление новых приборов и оборудования, как промышленного, так и бытового, предполагают потребление дополнительной энергии.

Кроме того, состояние электросетей достаточно сложное, в некоторых участках оно неудовлетворительное. Общая изношенность имеет высокий процент, на замену и обновление материальной базы требуются немалые средства. Решать вопрос путем увеличения расценок за электроэнергию — означает вызвать волну критики и вопросов от населения и предпринимателей, вполне справедливых.

Использование ветрогенераторов как альтернативной энергетической отрасли государственного масштаба в России нецелесообразно. Причиной этого являются относительно слабые и нестабильные ветра, невысокая эффективность направления в сравнении с традиционным методом производства энергии.

Наиболее выгодным и полезным представляется использование для обеспечения частных домов, усадеб, фермерских хозяйств, расположенных вдали от сетевых источников и не имеющих возможности подключения.

Основная проблема, возникающая перед пользователями — стоимость оборудования. Цены на устройства заводского изготовления слишком высоки для населения, что резко ограничивает возможности спроса и . При этом, обеспечивает экономию денег в 10 и более раз при таком же качестве. Это обстоятельство является ключевым условием развития ветроэнергетики на бытовом уровне — при появлении доступных по цене образцов спрос увеличится в десятки раз.

Мнение эксперта

Специалист портала Energo.House

Наибольшие перспективы у ветроэнергетики имеются в степных регионах, на юге России, в местностях, где строительство дополнительных ГЭС или АЭС невозможно.

Основным импульсом в развитии стало бы решение правительства о строительстве крупных ВЭС, но на сегодня их параметры не могут в достаточной степени конкурировать с ГЭС или АЭС ни по мощности, ни по производительности. Кроме того, нестабильность источника энергии — ветра — является достаточно серьезным аргументом против использования этого направления в промышленных масштабах.

Применение энергии ветра

На сегодняшний день использование энергии ветра имеет мелкие масштабы. Гидро- и ядерная энергетика в связке с угольными или мазутными ТЭЦ практически полностью закрывают потребность населения, а регионы, не имеющие подключения, пока обходятся дизельными или бензиновыми генераторами. Поэтому реализация программ альтернативных способов выработки энергии и, в частности, ветроэнергетики, еще не созрела для реального воплощения в жизнь.

Необходимо учитывать, что речь идет о промышленном производстве энергии, способном обеспечивать, как минимум, населенные пункты.  Существующие относительно небольшие ветроэлектростанции пока нельзя считать существенным вкладом в энергетику страны, скорее, это варианты использования существующих возможностей при отсутствии подключения или недостатке имеющихся ресурсов.

Наибольший эффект в условиях России способны показывать именно небольшие ветряки, используемые для обеспечения одного дома или усадьбы. Для отдаленных поселков, дачных или коттеджных, где подключение стоит очень дорого, а состояние сетей допускает частые и внезапные отключения и перебои, использование собственного ветрогенератора способно стать неплохим вариантом дополнительного или основного источника питания бытовой техники и маломощного оборудования.

Мнение эксперта

Специалист портала Energo.House

Для освещения или водоснабжения уже сегодня достаточно активно используются ветряки, созданные из подручных материалов. Они вполне справляются со своей задачей, имеют высокую ремонтопригодность и неприхотливы в обслуживании.

Такие преимущества привлекают широкий круг пользователей, желающих установить у себя на участке. Это позволит разгрузить имеющиеся электросети и сэкономить на счетах за электричество. Таким образом может быть частично или полностью решена проблема энергоснабжения отдаленных населенных пунктов, экспедиций или прочих участков.

Самая крупная ветровая электростанция в России

На сегодняшний день самой крупной из действующих в России является Ульяновская ВЭС. Ее установленная мощность составляет 35 МВт, что относительно немного в сравнении с имеющимися ГЭС. Станция совсем новая, запущена в эксплуатацию в январе 2018 года. ВЭС принадлежит компании Фортум, строительство комплекса продолжалось два года. В состав станции входят 14 ветротурбин по 2,5 МВт мощностью.

Поставщиком комплекса является китайская компания DongFung, выигравшая тендер на поставку проектного оборудования. Проектные работы начались в феврале 2016 года, а непосредственное строительство стартовало в мае 2017. Примечательно, что основными участниками создания проекта и строительных работ являлись компании из России, хотя были и зарубежные представители. При этом, доля российского оборудования составляет 28 %, т.е. большинство технического обеспечения создано в Китае.

Данная ВЭС не долго будет являться самой крупной в России. В планах компании Фортум в партнерстве с компанией Вестас (мировым поставщиком ветротурбин и оборудования для ВЭС) строительство большого количества турбин суммарной мощностью до 1000 МВт. Предполагаемый процент российского оборудования в этих проектах — 65%.

Крупнейшие ВЭС в стране

Количество ветроэлектростанций в России не так уж и мало, хотя их мощность относительно невелика. Имеются агрегаты в Калининградской области, в Оренбургской области, в Башкортостане, Калмыкии, на Чукотке, в Белгородской области.

Большой список ВЭС имеется в Крыму, где ветроэнергетика имеет большую эффективность из-за географического положения и особенностей атмосферных потоков ветра. Изолированная энергосистема Крыма во многом опирается на ветрогенераторы, позволяющие использовать собственную энергию, а не поставляемую с материка.

Имеющиеся на сегодняшний день ВЭС являются, по сути, первыми пробными комплексами, созданными в том числе для получения практического опыта эксплуатации подобных сооружений и для сбора статистики, дающей информацию о возможностях ВЭС в условиях российских регионов.

В планах значится строительство намного более производительных и мощных ветростанций, предполагаемый ввод в эксплуатацию — 2020-2022 гг. Мощность каждого комплекса будет составлять от 15 до 300 МВт, что сможет в значительной степени разгрузить обветшалые сети, позволит стабилизировать работу энергостистем регионов, сделает возможной подачу электроэнергии в отсталые районы.

energo.house

Почему СССР был лидером в ветроэнергетике, а сейчас нам приходится всех догонять

Самым неожиданным пируэтом на пути человечества к ветровой энергетике может похвастаться Россия. Когда ВЭС были непопулярны на Западе, они были на подъеме у нас. Когда в мире их стали активно развивать, в стране появились просто толпы экспертов из энергетической отрасли, которые указывали: «Место для ветряков в Европе кончилось». Правда, с тех пор, как у нас начали это говорить, мощность ВЭС у европейцев выросла в десятки раз и продолжает расти. Видимо, до них мнение наших экспертов не довели.

Ну а в 2016 году мы внезапно еще раз поменяли мнение, так сказать, вернулись в добрежневский СССР. Первым на государственном уровне сказал свое веское слово Росатом. Его замгендиректора Вячеслав Першуков честно отметил: после выполнения имеющихся заказов на строительство новых АЭС за рубежом Росатом может остаться без зарубежных строек, поскольку этот рынок быстро сокращается. Атомная генерация за пределами России, действительно, переживает упадок, и никаких перспектив выхода из него не видно.

Главная причина проста: энергия АЭС западной постройки стоит дорого. Энергия АЭС российской постройки дешевле, но все равно не настолько, как у новых западных ветряков. Да, для компенсации их непостоянства нужно немного газовых ТЭС, но для АЭС они тоже нужны. Ведь реактор всегда дает одинаковую выработку, а люди потребляют днем куда больше, чем ночью. При равной цене и равных проблемах западный покупатель, на которого вечно давят "зеленые", никогда не выберет атомную генерацию.

Вот Першуков и констатирует: возможности строительства новых крупных АЭС за рубежом практически исчерпаны. «Мы должны зарабатывать не на рынке ядерных технологий. Все. Иначе не получается», – верно отмечает он.

Конечно, если сперва забрасывать какое-то дело на десятилетие, а потом браться за него, когда у конкурентов уже есть отработанные годами технологии, то сразу на лидерские позиции рассчитывать не стоит. Поэтому Росатом пошел по уже проторенному Петром I пути и начал учиться новому (а точнее — хорошо забытому у нас старому) у голландцев. С помощью дочерней структуры он создал партнерство с Lagerwey. До 2020 года госкорпорация планирует построить 26 небольших ВЭС на 610 мегаватт — начиная с Ульяновской области уже в 2018 году. Да, это меньше одной сотой от ежегодного мирового ввода, но на этих крохах Росатом учится. К тому же в 2020 году предполагается локализовать производство ветряков в России на 65 процентов.

Сложнее будет потом, когда придется выйти на большие масштабы. С прибылью производить ветряки общей мощностью лишь на сотни мегаватт в год нельзя. Это большой бизнес, без массового производства низкой цены в нем не будет. Поэтому надо расширять как строительство ветряков у нас, так и выходить на мировой рынок. Однако, здесь конкурировать будет очень тяжело.

Гиганты типа Vestas потратили десятки лет на отработку своих технологий и построили совершенно уникальные мощности. Например, завод по выпуску титанических лопастей в десятки тонн, расположенный на острове специально для того, чтобы проще было вывозить такой сложный для сухопутных дорог груз. Где Росатом построит такое, и сможет ли он угнаться за постоянно совершенствующимся рынком ветряков — вопрос, и непростой.

www.kp.ru

Ветряные электростанции в России и перспективы их развития

Развитие ветроэнергетики в России

В конце 80-х — начале 90-х годов XX века под влиянием мировой тенденции повышения цен на топливные энергетические ресурсы в ряде стран Европы (Дания, Германия, Италия, Испания), а также в США, Канаде, Китае и Индии возобновился интерес к использованию энергии ветра. Многочисленные исследования и разработки, проведенные при поддержке различных инвестиционных фондов и национальных государственных программ, дали толчок для развития новых технологий в области ветроэнергетики, что в свою очередь позволило снизить себестоимость производства ВЭУ, многократно повысить мощность ветротурбин и улучшить другие важные технико-эксплуатационные параметры оборудования.

 

Главными стимулирующими факторами для появления ветряных электростанций в России стали обострение мировых энергетических и экологических проблем и успешный положительный опыт стран-лидеров по использованию ветроэнергетического потенциала.

На начало 2010 года установленная мощность ВЭУ в России составила порядка  17-18 МВт. За последние несколько лет отечественный рынок ветроэнергетических установок ежегодно увеличивается в среднем на 15-20%. В отрасли пока отсутствуют крупные отечественные производители ветроэлектростанций средней и большой мощности, способные конкурировать с ведущими игроками на мировом рынке ВЭУ (PANASONIC, VESTAS, SUPERWIND, VERGNET, NORDEX, ECOTECNIA). Производством ветряных электростанций в России занимаются  небольшие коммерческие предприятия и ряд заводов военно-промышленного комплекса, изготавливающих ВЭУ в рамках конверсионных программ. К наиболее известным российским производителям ветряных электростанций относятся: ООО «Ветро Свет», ООО “Сапсан-Энергия”, “ЛМВ Ветроэнергетика”, ООО “СКБ Искра”, ЗАО “Ветроэнергетическая компания”, OOO “ГРЦ-Вертикаль”, ООО «Стройинжсервис», ЗАО “Агрегат-Привод”, НПП» Энерго-Экологические Системы «, ООО «ЕвроСтандартСервис» и R-Engineering (бренд RKraft).

Использование ветроэнергетических установок в России

Срок окупаемости ветряков одинаковой мощности в различных регионах РФ варьируется от 7,5 до 15 лет. Во-первых, из-за различий среднегодовой скорости ветра, во-вторых, из-за разницы в тарифах на электрическую энергию и стоимости подведения централизованного энергоснабжения. С экономической точки зрения наиболее перспективными регионами для установки ветряных электростанций в России являютсяДальний Восток, Северный экономический район, Западная и Восточная Сибирь. Зона Приморья, для которой характерны стабильные и сильные ветра, также относится к районам с высоким потенциалом развития ветроэнергетики.

Подавляющее большинство ветроэнергетических установок в России устанавливается в районах, где наряду с высокой среднегодовой скоростью ветра (не менее 5 м/с) себестоимость 1 кВт ветряной энергии является ниже, чем электроэнергия от централизованных источников энергоснабжения. Также ВЭУ успешно конкурируют с дизельными электрогенераторами и используются для энергоснабжения объектов, удаленных от централизованных электрических сетей.

greenvolt.ru

Ветряные электростанции России

Навеяно постом про новую ветровую электростанцию в Великобритании.Начала работу морская ветряная ферма с самыми мощными турбинами в мире. 32 турбины, по 8 Мегаватт=256 Мегаватт. Неплохо. Альтернативная энергетика развивается, и это хорошо. Давайте посмотрим, что есть в России по ветрякам. Суммарная установленная электрическая мощность ветряных электростанций ЕЭС России на 1 июля 2016 года составляет 10,9 МВт или всего 0,01% от установленной мощности электростанций энергосистемы. Это очень мало, и зелёная братия со зловещим ликованием машет этой цифрой, мол смотрите, как слабо в РФ развита зелёная энергетика. Однако у этой цифры есть техническая причина. Это лишь та электроэнергия, которая поступает в общую российскую энергосистему. Если ветряная электростанция работает на какой-то город или населённый пункт, она в эту статистику не попадает и носит название изолированной энергосистемы, то есть для локальных нужд. Вот электростанции, которые попали в статистику (не изолированные).Ветряные электростанции России А вот электростанции изолированные. В общую статистику не идут, но работают.Ветряные электростанции России Если поскладывать мощности, получается 95 Мегаватт. К ним добавим не-изолированные, получим 105 Мегаватт. Это уже лучше, но всё равно хочется больше. Поэтому смотрим проектируемые и строящиеся ветровые электростанции.Ветряные электростанции России Хочется пожелать этой индустрии добра и попутного ветра. А вот ещё несколько новостей на эту тему.Ветряные электростанции России Ещё статья:В России к 2030г планируется построить 13 ГЭС и 15 ВЭС Выдержка оттуда: в 2017 году в Адыгее планируется ввести в эксплуатацию Шовгеновский ветропарк (144 МВт), в 2019 году — Гиагинский ветропарк (195 МВт) и Кошехабльский ветропарк (102 МВт). В 2018 году предполагается запустить Оренбургскую ВЭС (150 МВт).

Планируется, что в 2020 году в Мурманской области будет введена в эксплуатацию Кольская ВЭС (100 МВт), до 2025 года — ветропарк поселка Лодейное (300 МВт). До 2030 года будут введены в эксплуатацию Калининградская ВЭС (200 МВт), ВЭС в Усть-Луге (300 МВт), Нижегородская ВЭС (350 МВт), ветропарк «Средняя Волга» (1 ГВт)!!! в Саратовской области, Астраханская ВЭС (100 МВт), Приютненская ВЭС (150 МВт) в республике Калмыкия, Краснодарский ветропарк (1 ГВт)!!!, Карачаево-Черкесская ВЭС (300 МВт), Омский ветропарк (110 МВт).

П.С. Кстати, гидроэлектростанции тоже считаются возобновляемой зелёной энергетикой. Доля возобновляемых источников электроэнергии в 2015 (гидро, солнце, ветер):Россия:16,3%США: 13,8%Великобритания: 26,3% Мировой лидер — Норвегия — 97%, опять же за счёт гидро. Цифры взял отсюда. Там красивая карта кому интересно.

Напоследок фотки из Крыма. Солнечная электростанция Перово (Симферопольский район). Всего по Крыму мощность пяти солнечных электростанций составляет 297 МВт.Ветряные электростанции России Ветряная электростанция Мирное (Сакский район)Ветряные электростанции России Ветряки в Восточном Крыму.Ветряные электростанции России Всем хорошего настроения!

smart-lab.ru

Ветряная электростанция — Википедия

Ветроэнергетика: общемировая годовая динамика установленной мощности ВЭС[1]. Прибрежная ветровая электростанция Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире

Ветряная электростанция  — это несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть. Крупные ветровые электростанции могут состоять из 100 и более ветрогенераторов. Иногда ветровые электростанции называют «ветровыми фермами» (от англ. Wind farm).

Планирование

Исследование скорости ветра

Ветровые электростанции строят в местах с высокой средней скоростью ветра — от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного—двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветровых электростанций, так как эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) — компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

Высота

Скорость ветра возрастает с высотой. Поэтому ветровые электростанции строят на вершинах холмов или возвышенностей, а генераторы устанавливают на башнях высотой 30—60 метров. Принимаются во внимание предметы, способные влиять на ветер: деревья, крупные здания и т. д.

Экологический эффект

При строительстве ветровых электростанций учитывается влияние ветрогенераторов на окружающую среду. Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветровой энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Современные ветровые электростанции прекращают работу во время сезонного перелёта птиц.

Видео по теме

Типы ветровых электростанций

Наземная

Наземная ветровая электростанция в Испании. Построена по вершинам холмов. Наземная ветряная электростанция возле Айнажи, Латвия.

Самый распространённый в настоящее время тип ветровых электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностях.

Промышленный ветрогенератор строится на подготовленной площадке за 7—10 дней. Получение разрешений регулирующих органов на строительство ветровой электростанции может занимать год и более.

Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

Электростанция соединяется кабелем с передающей электрической сетью.

Крупнейшей на данный момент ветровой электростанцией является электростанция Альта, расположенная в штате Калифорния, США. Полная мощность — 1550 МВт.

Прибрежная

Строительство прибрежной электростанции в Германии.

Прибрежные ветровые электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой — с остывшего побережья к водоёму.

Шельфовая

Шельфовые ветровые электростанции строят в море: 10—60 километров от берега. Шельфовые ветровые электростанции обладают рядом преимуществ:

  • их практически не видно с берега;
  • они не занимают землю;
  • они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построено 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией в 2009 году являлась электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт[2]. В 2013 году крупнейшей стала London Array (Великобритания) с установленной мощностью 630 МВт[3].

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

Плавающая

Строительство первой плавающей электростанции. Норвегия. Май 2009 года.

Первый прототип плавающей ветровой турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года[4]. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания в 2017 году довела мощность турбины до 6 МВт, а диаметр ротора — до 154 метра[5].

Парящая

Парящей называют ветровые турбины, размещенные высоко над землей, для использования более сильного и стойкого ветра[6]. Концепция разработана в 1930-е годы в СССР инженером Егоровым[7].

Текущим рекордсменом считается «Парящая ветровая турбина Altaeros» (Altaeros Buoyant Airborne Turbine (BAT)), которая будет установлена на высоте 1000 футов (304,8 м) над землей. Этот пилотный проект промышленного масштаба будет находиться на высоте 275 футов выше, чем текущий рекордсмен - Vestas V164-8.0-MW. Последний совсем недавно установил свой прототип в Датском национальном центре тестирования больших турбин (Danish National Test Center for Large Wind Turbines) в Остерильде (Østerild). Высота расположения оси Vestas 460 футов (140 метров), лопасти турбин в высоту более 720 футов (220 метров). У Altaeros мощность турбины 30 кВт. этого достаточно для обеспечения энергией 12 домов. Для поднятия на такую высоту Altaeros использует невоспламеняемую надувную оболочку, наполненную гелием. Проводником для произведенной энергии служат высокопрочные канаты.[источник не указан 1232 дня]

Горная

Первая на постсоветском пространстве горная ВЭС мощностью 1,5 МВт была запущена на Кордайском перевале в Жамбылской области Казахстана в 2011 году[8]. Высота площадки - 1200 метров над уровнем моря. Среднегодовая скорость ветра 5,9 м/сек. В 2014 году количество ветротурбин «Vista International» мощностью по 1,0 МВт на «Кордайской ВЭС» было доведено до 9 агрегатов при проектной мощности 21 МВт[9]. В дальнейшем планируется введение в строй Жанатасской (400 МВт) и Шокпарской (200 МВт) ветряных электростанций.

В феврале 2015 года в Восточных Карпатах у города Старый Самбор запущена в работу первая в Западной Украине горная ВЭС «Старый Самбор 1» мощностью в 13,2 МВт. Общая мощность 79,2 МВТ. Она представлена ветротурбинами VESTAS V-112 датского производства номинальной мощностью 6,6 МВт[10]. Высота площадки 500 - 600 м над уровнем моря, среднегодовая скорость ветра 6,3 м/сек[11].

Панорамы ВЭС

ВЭС в России

На 2008 год общая мощность ВЭС в стране исчислялась 16,5 МВт[12]. Одна из крупнейших ветровых станций России — Зеленоградская ВЭУ, расположенная в районе посёлка Куликово Зеленоградского района Калининградской области. Её суммарная мощность составляет 5,1 МВт. Состоит из ВЭУ датской компании SЕАS Energi Service A.S. (1 новая мощностью 600 кВт и 20 отработавших 8 лет в Дании мощностью 225 кВт каждая).

Мощность Анадырской ВЭС составляет 2,5 МВт.

Мощность ВЭС Тюпкильды (Башкортостан) составляет 2,2 МВт.

Заполярная ВЭС, находящаяся около города Воркута в Коми, имеет мощность 1,5 МВт, построена в 1993 году. Состоит из шести установок АВЭ-250 российско-украинского производства мощностью 250 кВт каждая.

Около Мурманска строится опытная демонстрационная ВЭУ мощностью 250 кВт[13]. В селе Пялица, в мае 2014 года, открыта первая в Мурманской области ветровая электростанция. Так же до 2016 года предусматривается дальнейшее введение ветропарков в Ловозерском и Терском районах области[14].

См. также

Примечания

Литература

  • Методы разработки ветроэнергетического кадастра. — АН СССР, ГЛАВНИИ при Госэкономсовете Энергетический институт им. Г. М. Кржижановского. Изд-во АН СССР, 1963.

Ссылки

Отрасли промышленности

wikipedia.green

Ветроэнергетика в России

Ветроэнергетика в России

Энергия ветра — это преобразованная энергия солнечного излучения, и пока светит Солнце, будут дуть и ветры. Таким образом, ветер — это тоже возобновляемый источник энергии.

Люди используют энергию ветра с незапамятных времен — достаточно вспомнить парусный флот, который был уже у древних финикян и живших одновременно с ними других народов, и ветряные мельницы. В принципе, преобразовать энергию ветра в электрический ток, казалось бы, нетрудно — для этого достаточно заменить мельничный жернов электрогенератором. Ветры дуют везде, они могут дуть и летом, и зимой, и днем, и ночью — в этом их существенное преимущество перед самим солнечным излучением. Поэтому вполне п9нятны многочисленные попытки "запрячь ветер в упряжку" и заставить его вырабатывать электрический ток.

Первая в нашей стране ветровая электростанция мощностью 8 кВт была сооружена в 1929-1930 гг. под Курском по проекту инженеров А.Г.Уфимцева и В.П.Ветчинкина. Через год в Крыму была построена более крупная ВЭС мощностью 100 кВт, которая была по тем временам самой крупной ВЭС в мире. Она успешно проработала до 1942 г., но во время войны была разрушена. В настоящее время в СССР выпускаются серийные ветроагрегаты мощностью 4 и 30 кВт и готовятся к выпуску более мощные установки 100 и даже 1000 кВт. Делаются первые шаги по пути перехода от единичных автономных ВЭС к системам связанных в единую сеть многих ветроагрегатов большой мощности. Первая такая система должна быть сооружена около поселка Дубки в Дагестане.

Значительные успехи в создании ВЭС были достигнуты за рубежом. Во многих странах Западной Европы построено довольно много установок по 100-200 кВт. Во Франции, Дании и в некоторых других странах были введены в строй ВЭС с номинальными мощностями свыше 1 МВт

Ветроэнергетические установки (ВЭУ) достигли сегодня уровня коммерческой зрелости и в местах с благоприятными скоростями ветра могут конкурировать с традиционными источниками электроснабжения. Из всевозможных устройств, преобразующих энергию ветра в механическую работу, в подавляющем большинстве случаев используются лопастные машины с горизонтальным валом, устанавливаемым по направлению ветра. Намного реже применяются устройства с вертикальным валом.

Кинетическая энергия, переносимая потоком ветра в единицу времени через площадь в 1 м2 (удельная мощность потока), пропорциональна кубу скорости ветра. Поэтому установка ВЭУ оказывается целесообразной только в местах, где среднегодовые скорости ветра достаточно велики.

Ветровое колесо, размещенное в свободном потоке воздуха, может в лучшем случае теоретически преобразовать в мощность на его валу 16/27=0,59 (критерий Бетца) мощности потока воздуха, проходящего через площадь сечения, ометаемого ветровым колесом. Этот коэффициент можно назвать теоретическим КПД идеального ветрового колеса. В действительности КПД ниже и достигает для лучших ветровых колес примерно 0,45. Это означает, например, что ветровое колесо с длиной лопасти 10 м при скорости ветра 10 м/с может иметь мощность на валу в лучшем случае 85 кВт.

Наибольшее распространение из установок, подсоединяемых к сети, сегодня получили ветроэнергетические установки (ВЭУ) с единичной мощностью от 100 до 500 кВт. Удельная стоимость ВЭУ мощностью 500 кВт составляет сегодня около 1200 долл/кВт и имеет тенденцию к снижению.

Наряду с этим создаются ВЭУ и с существенно большей единичной мощностью. В 1978 г. в США была создана первая экспериментальная ВЭУ мегаваттного класса с расчетной мощностью 2 МВт. Вслед за этим в 1979-1982 гг. в США были сооружены и испытаны 5 ВЭУ с единичной мощностью 2,5 МВт. Самая большая к тому времени ВЭУ (Гровиан) мощностью 3 МВт была сооружена в Германии в 1984 г., но, к сожалению, она проработала лишь несколько сот часов. Построенные несколько позже в Швеции ВЭУ WTS-3 и WTS-4 мощностью соответственно 5 и 4 МВт были установлены в Швеции и США и проработали первая 20, а вторая 10 тыс.ч.

В Канаде ведутся работы по созданию крупных ветровых установок с вертикальным валом (ротор Дарье). Одна такая установка мощностью 4 МВт проходит испытания с 1987 г. Всего за 1987-1993 гг. в мире было сооружено около 25 ВЭУ мегаваттного класса.

Расчетная скорость ветра для больших ВЭУ обычно принимается на уровне 11-15 м/с. Вообще, как правило, чем больше мощность агрегата, тем на большую скорость ветра он рассчитывается. Однако в связи с непостоянством скорости ветра большую часть времени ВЭУ вырабатывает меньшую мощность. Считается, что если среднегодовая скорость ветра в данном месте не менее 5-7 м/с, а эквивалентное число часов в году, при котором вырабатывается номинальная мощность не менее 2000, то такое место благоприятно для установки крупной ВЭУ и даже ветровой фермы.

Автономные установки киловаттного класса, предназначенные для энергоснабжения сравнительно мелких потребителей, могут применяться и в районах с меньшими среднегодовыми скоростями ветра.

Сегодня в некоторых промышленно развитых странах установленная мощность ВЭУ достигает заметных значений. Так, в США установлено более 1,5 млн. кВт ВЭУ, в Дании ВЭУ производят около 3 °/о потребляемой страной энергии; велика установленная мощность ВЭУ в Швеции, Нидерландах, Великобритании и Германии.

По мере совершенствования оборудования ВЭУ и увеличения объема их выпуска стоимость ВЭУ, а значит и стоимость производимой ими энергии снижаются. Если в 1981 г. стоимость электроэнергии производимой ВЭУ, составляла примерно 30 американских центов за кВт./ч, то сегодня она составляет 6-8 центов. С учетом того, что только в 1995 г. в США велись работы по четырем большим ветровым фермам с общей мощностью около 200 МВт, станет ясно, что планируемое Департаментом Энергетики США снижение стоимости ветровой электроэнергии до 2,5 центов/ (кВт. ч) вполне реально [57, 90,94].

В развивающихся странах интерес к ВЭУ связан в основном с автономными установками малой мощности, которые могут использоваться в деревнях, удаленных от систем централизованного электроснабжения. Такие установки уже сегодня конкурентоспособны с дизелями, работающими на привозимом топливе. Однако в некоторых случаях непостоянство скорости ветра заставляет либо устанавливать параллельно с ВЭУ аккумуляторную батарею, либо резервировать ее установкой на органическом топливе. Естественно, это повышает стоимость установки и ее эксплуатации, поэтому распространение таких установок пока невелико.

В России существует значительный нереализованный задел в области ветроэнергетики. Фундаментальные исследования аэродинамики ветряка , осуществленные в ЦАГИ , заложили основу современных ветротурбин с высоким коэффициентом использования энергии ветра. Однако жесткая ориентация на большую гидроэнергетику и угольно-ядерную стратегию и почти полную глухоту к новациям и экологическим проблемам надолго затормозило развити ветроэнергетики. Выпускаемые “ Ветроэном” ветроустановки не отвечали современным требованиям и представлениям высоких технологий ветроэнергетической индустрии. Толчком для дальнейшего продвижения и создания современного ветроэнергетического оборудования стала федеральная научно-техническая программа “Экологически чистая энергетика”[193] . Для участия и получения финансирования были отобраны лучшие проекты ветроэнергетических установок различных классов по мощности. Были разработаны проекты ветроагрегатов мощностью до 30 кВт , 100 кВт, 250 кВт, 1250 кВт.

Начавшаяся перестройка, развал экономики и прекращение финансирования по программе не позволила довести указанные проекты до коммерческого уровня. Почти все проекты остались на уровне опытных и макетных образцов. Опытный образец ветроагрегата мегаваттного класса был спроектирован и построен МКБ “Радуга” , который организовал кооперацию предприятий авиационной промышленности. Разработка, изготовление и строительство финансировалось правительством Калмыкии. Ветроагрегат был построен недалеко от Элисты и успешно работает , вырабатывая 2300-2900 тыс. кВт ч электроэнергии в год. Ветроагрегат подключен к сети. В МКБ “ Радуга” были спроектированы ветроагрегаты мощностью 8кВт и 250 кВт. Российской Ассоциацией развития ветроэнергетики “ Energobalance Sovena” совместно с Германской фирмой Husumer SchiffsWert (HSW) были изготовлены 10 ветроагрегатов сетевого исполнения единичной мощностью 30 кВт. Ветропарк с установленной мощностью 300 кВт был построен в 1996 г. в Ростовской области и запущен в эксплуатацию.

Сегодня возможны следующие сценарии развития ветроэнергетики в России:

закупка и монтаж зарубежных ветроагрегатов;

трансферт западных технологий и организация производства в России ;

кооперация с зарубежными фирмами и производство ветроагегатов в России ;

организация производства собственных ветроагегатов, ноу-хау которых защищено международным законодательством .

Для России предпочтительней последний сценарий, однако он сдерживается существующим налоговым законодательством, монополией производителей электроэнергии, отсутствием инвестиций и развалом производства.

Фундаментальные знания в области ветроэнергетики

На примере совершенствования модели ветра можно показать что углубление знаний в этой области позволило приблизиться к адекватной модели преобразования энергии На рис. показаны: использование упрощенной модели ветра с осредненными параметрами по времени и в пространстве до 70 годов, учет изменения скорости ветра по высоте в 75 годы, использование турбулентной модели ветра в 85 годы.

Минусы ветроэнергетики

Ветер дует почти всегда неравномерно. Значит, и, генератор будет работать неравномерно, отдавая то большую, то меньшую мощность, ток будет вырабатываться переменной частотой, а то и полностью прекратится, и притом, возможно, как раз тогда, когда потребность в нем будет наибольшей. итоге любой ветроагрегат работает на максимальной мощности лип малую часть времени, а в остальное время он либо работает на пониженной мощности, либо просто стоит.

mirznanii.com

Ветроэнергетика в России,развитие технологии в ветроэнергетике

В России существует значительный нереализованный задел в области ветроэнергетики. Фундаментальные исследования аэродинамики ветряка , осуществленные в , заложили основу современных ветротурбин с высоким коэффициентом использования энергии ветра. Однако жесткая ориентация на большую гидроэнергетику и угольно-ядерную стратегию и почти полную глухоту к новациям и экологическим проблемам надолго затормозило развитие ветроэнергетики.Выпускаемые “ Ветроэном” ветроустановки не отвечали современным требованиям и представлениям высоких технологий ветроэнергетической индустрии. Толчком для дальнейшего продвижения и создания современного ветроэнергетического оборудования стала федеральная научно-техническая программа “Экологически чистая энергетика«. Для участия и получения финансирования были отобраны лучшие разработки ветроэнергетичесих установок различных классов по мощности. Были разработаны проекты ветроагрегатов мощностью до 30 , 100 ,250 , 1250 кВт. Начавшаяся перестройка, развал экономики и прекращение финансирования по программе не позволила довести указанные проекты до коммерческого уровня. Почти все разработки остались на уровне опытных и макетных образцов. Опытный образец ветроагрегата мегаваттного класса был спроектирован и построен МКБ “Радуга” , который организовал кооперацию предприятий авиационной промышленности. Разработка, изготовление и строительство финансировалось правительством Калмыкии. Ветроагрегат был построен недалеко от Элисты и успешно работает , вырабатывая 2300-2900 тыс. кВт\ч электроэенергии в год. Ветроагрегат подключен к сети. В МКБ “ Радуга” были спроектированы ветроагрегаты мощностью 8 и 250 кВт. Российской Ассоциацией развития ветроэнергетики “ Energobalance Sovena” совместно с Германской фирмой Husumer SchiffsWert (HSW) были изготовлены 10 ветряков сетевого исполнения единичной мощ. 30 кВт. Ветропарк с установленной мощ. 300 кВт был построен в 1996 г. в Ростовской области и запущен в эксплуатацию.

Сегодня возможны следующие сценарии развития ветроэнергетики в России:

  • закупка и монтаж зарубежных ветроагрегатов;
  • трансферт западных технологий и организация производства в России ;
  • кооперация с зарубежными фирмами и производство ветроагегатов в России ;
  • организация производства собственных ветроагегатов, ноу-хау которых защищено международным законодательством .

Для России предпочтительней последний сценарий, однако он сдерживается существующим налоговым законодательством, монополией производителей электроэнергии, отсутствием инвестиций и развалом производства.

Ветроэнергетика (wind power) — отрасль альтернативной энергетики, связанная с разработкой методов и средств преобразования энергии ветра в механическую, тепловую или электрическую энергию.Ветроэнергетике присущи все преимущества, характерные для альтернативной энергетики в целом — экологическая чистота, возобновляемость, низкие эксплуатационные затраты.

К недостаткам ветроэнергетики относят:

* шум — минимальное допустимое расстояние от ветроустановки до жилых домов — 300 м* визуальное воздействие ветрогенераторов — является скорее субъективным и легко разрешаемым фактором, сейчас для улучшения эстетического вида ветряков во многих крупных фирмах работают профессиональные дизайнеры* занятие больших земельных участков — также является спорным недостатком, фундамент ветроустановки обычно полностью находится под землей, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни

Для преобразования энергии ветра в другие виды энергии — механическую, тепловую, электрическую и др., используют ветроэнергетические установки (wind power plant).

В настоящее время применяются две основные конструкции ветроэнергетических установок (ВЭУ): горизонтально осевые и вертикально осевые ветродвигатели. Оба типа ветроэнергетических установок имеют примерно равный КПД, однако наибольшее распространение получили ветроагрегаты первого типа. Мощность ветроэнергетической установки может быть от сотен ватт до нескольких мегаватт.[adsense_id=»1″]Ветроэлектростанция (wind electrical power station) — электростанция, состоящая из двух и более ветроэлектрических установок, предназначенная для преобразования энергии ветра в электрическую энергию и передачу ее потребителю.

Ветроагрегат (wind unit) — система, состоящая из ветродвигателя, системы передачи мощности и приводимой ими в движение машины — электромашинного генератора, насоса, компрессора и т.п.

Гибридные ветроэнергетические установки (combine wind systems) — системы, состоящие из ветроэнергетической установки и какого либо другого источника энергии (дизельного, бензинового, газотурбинного двигателей, фотоэлектрических, солнечных коллекторов, установок емкостного, водородного аккумулирования сжатого воздуха и т.п.), используемых в качестве резервного или дополнительного источника электроснабжения потребителей.

Ветропарк — это комплекс ветроэнергетических установок, часто установленных рядами, которые перпендикулярны господствующему направлению ветра. При разработке такого проекта нужно учитывать наличие дорог для доступа к ветроагрегатам, подстанции и мониторинговой и контрольной системам.

Классификация ветроэнергетических установок по назначению — ГОСТ Р 51990-2002 «Нетрадиционная энергетика. Ветроэнергетика. Установки ветроэнергетические. Классификация»Наименование Мощность Признак НазначениеСистемные, сетевые 200 кВт-5 МВт Работа ВЭУ параллельно с мощной электрической сетью Источники получения и выдачи в электрическую сеть максимально возможной выработанной электроэнергииАвтономные 50-500 кВт Работа ВЭУ индивидуально (автономно) Источники электропитания потребителей, не связанные электрической сетью, отличающиеся сравнительно низкими значениями коэффициента использования установленной мощностиГибридные — Работа ВЭУ параллельно с независимыми электро-станциями соизмеримой мощности (дизель-генераторы, малые ГЭС и др.) Источники электропитания для бесперебойного снабжения потребителей электроэнергией номинальной мощности

ВЕТРОЭНЕРГЕТИКА – мировой рынок

Альтернативная энергетика в общем и ветроэнергетика в частности демонстрируют бурное развитие во всем мире. Это связано с ростом цен на нефть, текущими проблемами энергетической безопасности и озабоченностью все большего числа людей проблемой изменения климата.

По состоянию на конец 2009 года было установлено около 152 ГВт ветроэнергетических установок (+30,3 ГВт или +25%). Таким образом, ветроэнергетика на протяжении последних лет продолжает оставаться крупнейшим сегментом рынка альтернативной энергетики.

В среднем в мире 1,5% потребляемой электроэнергии вырабатывается с использованием ветроэнергетических установок. В странах, где правительство оказывает поддержку ветропаркам, доля ветроэнергетики выше, например, в Дании при помощи ветра получают свыше 20% электроэнергии, в Испании — 10%, Германии — 8%.

Более половины всех мировых ветроэнергетических мощностей в настоящее время сосредоточено в Европе. Лидерами по темпам наращивания ветроэнергетических мощностей являются Северная Америка, Европа и Азия.

Сценарии развития мировой ветроэнергетики, разработанные специалистами, показывают, что при отсутствии государственной поддержки и рыночных стимулов, доля ветроэнергетики в мировом производстве электроэнергии может достичь 5% к 2030 году и 6,6% к 2050 году. При господдержке энергосбережения, ветроэнергетика может обеспечить 15.6% мирового производства электроэнергии к 2030 году и 17,7% к 2050 году. При масштабных энергосберегающих мероприятиях, ветроэнергетика обеспечивает 29,1% мирового производства электроэнергии к 2030 году и 34,2% — к 2050 году.

Таким образом, доля ветровой энергетики в системе энергоснабжения может быть значительно увеличена за счет реализации масштабных мероприятий в области энергосбережения.

Например, правительством Канады установлена цель к 2015 году производить 10% электроэнергии с использованием ветроэнергетических установок. Европейский Союз планирует к 2010 году установить 40 тыс. МВт ветрогенераторов, а к 2020 году — 180 тыс. МВт. В Китае, в соответствии с Национальным Планом Развития ветроэнергетики, планируется увеличить ветроэнергетические мощности до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 г.

На фоне того, как большинство стран мира обратило свое внимание на развитие альтернативной энергетики, Россия, напротив, продолжает наращивать темпы добычи и экспорта традиционного топлива. В структуре топливно-энергетического баланса страны ведущая роль принадлежит таким энергоресурсам, как газ и нефть — 53% и 18.9% совокупного потребления энергии соответственно. Кроме того, около 18% энергобаланса приходится на долю твердого топлива.

[like_to_read]

Из 1066,7 млрд. кВтч выработанной электроэнергии в 2009 году:

* более 68% произведено тепловыми станциями* около 15,5% гидроэлектростанциями* около 17% атомными станциями

С использованием возобновляемых источников энергии в России ежегодно вырабатывается не более 8,5 млрд. кВтч электрической энергии, без учета гидроэлектростанций установленной мощностью более 25 МВт, что составляет менее 1% совокупного объема.

За несколько лет до финансового кризиса в России стала создаваться нормативно правовая база развития рынка ветроэнергетических установок. Первым шагом в вопросе законодательного регулирования отрасли стало принятие в конце 2007 года поправок к Федеральному закону «Об электроэнергетике», заложивших рамочные основы развития отрасли. Это событие способствовало как формированию институциональных условий функционирования рынка, так и повышению инвестиционной привлекательности отрасли.Структура рынка альтернативной энергетики в России

К числу основных направлений государственной политики в сфере повышения энергоэффективности было отнесено развитие производства электрической энергии на основе:

* малых гидроэлектростанций, установленной мощностью менее 25 МВт* генерирующих установок на основе солнечной энергии* генерирующих установок на основе энергии ветра* генерирующих установок на основе геотермальной энергии природных подземных теплоносителей* генерирующих установок на основе низкопотенциальной тепловой энергии земли, воздуха, воды, включая сточные воды* генерирующих установок на основе биомассы и биогаза

Для достижения объема потребления ветроэнергетических установок планируется ввод в период с 2010 по 2020 годы генерирующих объектов (малых ГЭС, ветроэлектрических станций, приливных электростанций, геотермальных электростанций, тепловых электростанций на биомассе и прочих видов электроустановок) с суммарной установленной мощностью до 25 ГВт.

Таким образом, объем выработки электроэнергии на основе ветроэнергетических установок к 2020 году должен составить около 80 млрд. кВтч.[adsense_id=»1″]Суммарная мощность всех ветроэнергетических установок России составила в 2009 году только 17-18 МВт (столько в мире устанавливается за 6 часов) или 0,008% от электрогенерирующих мощностей РФ (220 ГВт).

По экспертным оценкам, технический потенциал (под потенциалом отрасли нами понимается средний годовой объем энергии, содержащийся в данном виде энергоресурса при полном ее превращении в полезно используемую энергию) ветровой энергии России оценивается свыше 6000 млрд. кВтч/год. Экономический потенциал составляет примерно 31 млрд. кВтч/год. Россия — одна из самых богатых в этом отношении стран — самая длинная на Земле береговая линия, обилие ровных безлесных пространств, большие акватории внутренних рек, озер и морей — все это наиболее благоприятные места для размещения ветропарков.

Важность развития ветроэнергетики в нашей стране определяется тем, что 70% территории России, где проживает 10% населения, находится в зоне децентрализованного энергоснабжения, которая практически совпадают с зоной потенциальных ветроресурсов (Камчатка, Магаданская область, Чукотка, Сахалин, Якутия, Бурятия, Таймыр и др.).

Внедрение новых ветроэнергетических мощностей происходит в России достаточно медленными темпами: на конец 2005 года их было — 14 МВт, 2006 — 15,5 МВт, 2007 — 16,5 МВт. В среднем темпы прироста составляют 8% в год — это один из самых низких показателей в мире, в Китае, для сравнения, он составляет ~ 60%, США ~ 30%, Испании ~ 20%.

К настоящему моменту в России представлено около 10 крупных ветропарков, на долю которых приходится около 90% суммарной мощности. Кроме того функционирует около 1600 малых ветроэнергетических установок, мощностью от 0,1 до 30 кВт.

Стоит отметить, что установка практически всех ветропарков относится к 2002-2003 годам. В последние же годы, увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, прирост составил 250 ветроэнергетических установок мощностью от 1 кВт до 5 кВт.

На рынке ветроэнергетики работают свыше 50 участников, половину из которых можно отнести к производителям. Практически все производители изготавливают свою продукцию на основании собственных разработок. Менее 1% изготавливают ветроэнергетические установки на основе трансферта зарубежных технологий.

Согласно государственным планам, в дальнейшем ветроэнергетика должна развиваться быстрыми темпами. Предполагается за три года увеличить объем введенных мощностей в 15,5 раз. Это достаточно сложная задача, учитывая нынешнюю динамику развития.

По оценкам ResearchTechart, при оптимистичном сценарии при условии государственной поддержки и стимулирования развития ветроэнергетики к 2011 году в России будет около 120 МВт установленной мощности.

Понравилось это:

Нравится Загрузка...

vetrodvig.ru