Справочник химика 21. Ацетилен и водород


Ацетилен из углерода и водорода

    Вращается только в этан, этилен и водород, то нарастание давления в действительности является показателем образования этилена, а не исчезновения метана. Если образуется комплекс продуктов (этан, этилен, ацетилен, углерод и водород), то нельзя установить связь между увеличением давления и разложением метана без полного анализа всех полученных продуктов. [c.76]     Ацетилен Бром Водород Двуокись углерода [c.269]

    Бензол, хотя и совершенно отличен от этилена (разд. 10.1), также содержит 5р — 8-связи углерод — водород длина связи С—Н в бензоле равна 1,084 А (10,84-10 нм), т. е. точно такая же, как в этилене. Ацетилен (разд. 8.2) содержит 8р-гибридизованный атом углерода, который с точки зрения еш,е большего 8-характера орбиталей должен образовывать более короткие связи, чем 8р -углерод в этилене. Это предположение оказалось правильным длина зр—8-связи равна 1,057 А (10,57-10 нм). [c.145]

    Ацетилен — линейная молекула, в которой все четыре атома расположены на одной прямой. Связи углерод — водород и углерод — углерод обладают цилиндрической симметрией относительно линии, соединяющей ядра, и, следовательно, являются с-связями. [c.229]

    Метан термически устойчив. Его термическая деструкция термодинамически возможна при температуре выше 560 °С. Однако с заметной скоростью реакция протекает при температуре выше 1000 °С. Главными продуктами являются этан, этилен, ацетилен, углерод и водород. Первичную реакцию описывают стехиометрическим уравнением  [c.306]

    У —ацетилен 2—водород 3—метан окись углерода 5 —водяной газ 6 —городской газ 7 — пропан. [c.881]

    Глубокое охлаждение широко применяется для конденсационного разделения углеводородных газовых смесей [17-19] с выделением таких ценнейших компонентов, как пропилен, ацетилен, этилен, оксид углерода, водород, на основе которых химическая промышленность выпускает все продукты основного органического синтеза пластические массы и смолы, синтетические волокна и каучуки, спирты, кетоны, эфиры, альдегиды, жирные кислоты и многие другие. [c.47]

    Длины связей углерод-водород в метане, этилене и ацетилене [c.58]

    Следует отметить, что изменения энергии связей углерод-углерод в зависимости от гибридизации гораздо больше, чем соответствующие изменения для связей углерод-водород. Вследствие этого вычисленные энергии стабилизации простых олефинов и ацетиленов и классических сопряженных диенов, диацетиленов и т. д. положительны. Рассчитанные значения согласуются с опытными в той же степени, как вычисленные и опытные значения теплот образования. Этого и следовало ожидать, поскольку энергия стабилизации и теплота образования неизбежно связаны друг с другом, [c.79]

    Ацетилен Бензин Водород Древесина Каменный уголь Керосин Нефтяной газ Окись углерода Природный газ Сжиженный газ [c.148]

    В последние годы в промышленности широко применяется получение ацетилена нри неполном горении метана в кислороде. По технико-экономическим показателям этот процесс является одним из наиболее эффективных процессов получения ацетилена из метана. В Советском Союзе он внедряется на ряде заводов на основе переработки природного газа и последующего использования отходящих газов Для производства аммиака и метанола. Образующийся при неполном окислении метана в кислороде ацетилен является термодинамически неустойчивым он легко разлагается на углерод и водород, а также взаимодействует с углекислотой и водяным паром с образованием окиси углерода и водорода. Схема процесса приводится на рис. V. 2. Сырье (природный газ или метан), не содержащее окиси углерода, водорода и высших углеводородов (так как в противном случае оно преждевременно воспламенится), поступает через подогреватель 1, где нагревается до 600° С, в верхнюю часть реактора 3 (в смесительную камеру горелки), куда подается также подогретый до той же температуры кислород в количестве до 65 объемн. % от метана. В результате процесса горения температура в реакторе 3 поднимается до 1500° С продукты реакции охлаждаются до 80° С орошением водой. [c.148]

    РАВНОВЕСИЕ СИСТЕМЫ УГЛЕРОД — ВОДОРОД — АЦЕТИЛЕН ПРИ высоких ТЕМПЕРАТУРАХ ) [c.300]

    Равновесие системы углерод—водород—ацетилен 301 [c.301]

    Равновесие системы углерод—водород—ацетилен 305 [c.305]

    Равновесие системы углерод—водород—ацетилен 309 [c.309]

    Равновесие системы углерод—водород—ацетилен [c.311]

    Равновесие системы углерод—водород—ацетилен 313 [c.313]

    Равновесие системы углерод—водород—ацетилен 315 [c.315]

    Равновесие системы углерод—водород—ацетилен 319 [c.319]

    Ацетилен, который образует с поверхностными гидроксильными группами значительно более слабую водородную связь, вызывает слабое возмущение исходного спектра стекла, как это следует из рис. (), в. Слабая полоса поглощения у 3250 см обусловлена валентным колебанием углерод—водород [c.20]

    При исследовании закономерностей взрывного распада диацетилена, его самовоспламенения и скорости распространения пламени необходимым этапом оказывается изучение реакций, происходящих при нагревании диацетилена и его смесей в широком интервале температур. Основными конечными продуктами пиролиза диацетилена являются этан, этилен, ацетилен, винилацетилен, водород и твердый углерод, содержание которых зависит от температуры и других условий реакции. Кинетика термического распада диацетилена изучалась в потоке гелия, азота и других газов с содержанием диацетилена от 0,1 до 25 мол. % в смеси при общем давлении, равном атмосферному и температурах от 637 до 1670° К [407-411]. [c.65]

    Пятиокись фосфора Воздух азот кислород водород окись углерода двуокись углерода сернистый ангидрид фосфористый водород окись азота двуокись азота гелий аргон метан ацетилен Фтористый водород хлористый водород бромистый водород аммиак сероводород хлор бром Бензол толуол ксилол хлороформ сероуглерод четыреххлористый углерод Сиирты кетоны пиридиновые основания жирные кислоты [c.241]

    При анализе технического карбида кальция на первом месте стоит определение общего выхода газа, образующегося при действии воды на карбид кальция. В большинстве случаев этот газ рассматривается и принимается в расчетах как ацетилен. Но известно, что газ, получаемый из технического карбида, не является чистым ацетиленом и содержит нормально до 1%, а в крайних случаях — до 4°/ загрязнений, из которых заслуживают внимания сероводород, фосфористый, водород, аммиак, кремневодород, гидрид кальция, окись углерода, водород, [c.2]

    Наиболее часто в лабораториях применяют кислород, азот, хлор, двуокись углерода, водород, сжатый воздух и аммиак, реже — ацетилен и метан. [c.489]

    Ацетилен получают из метана методом частичного сожжения последнего в токе кислорода. В этом процессе наряду с ацетиленом образуются окись углерода и водород, являющиеся сырьем для синтеза аммиака, метилового спирта и реакции Релена. Отпускная цена на ацетилен зависит от того, какой именно продукт предполагается получать в основном по этому процессу ацетилен или водород. Во всяком случае, процесс частичного сожжения всегда применяют в сочетании с установками, на которых могут быть использованы для химических синтезов другие получающиеся в результате частичного сожжения газообразные продукты. Этот процесс используют в США, Италии и Германии. Даже в США ацетилен из метана составляет всего лишь 10% общего производства ацетилена в этой стране. При этом в США производство ацетилена из метана методом частичного сожжения дислоцируется только в штатах Техас и Луизиана, где условия для этого исключительно благоприятны. [c.406]

    Опыты Вёлера положили начало органическому синтезу. В 1842 г. русский химик Н. Н. Зинин восстановлением нитробензола получил анилин француз М. Бертло в 1854 г. из глицерина и жирных кислот получил жиры, а в 1863 г.— ацетилен из водорода и углерода. Выдающийся русский ученый А. М. Бутлеров в 1861 г. из муравьиного альдегида впервые синтезировал сахаристое вещество. [c.287]

    Соединения с концевой ацетиленовой группой В—С=С—Н являются слабыми кислотами, как и ацетилен. По-видимому, причиной кислотности алкинов является сильно выраженный -характер яр-орбитали, участвующей в связи углерод—водород (разд. 2-9). -Характер в р-гибридизовапной орбитали проявляется в том, что в связи с С,р—Н электроны располагаются значительно ближе к ядру углерода, чем к ядру водорода. Это облегчает отрыв атома водорода, от такой связи с помощью основания. [c.356]

    Высокая концентрация водорода и ацетилена Высокая концентрация водорода и метана, но небольшая ацетилена Отсутствие или очень малые ко-. ичества углеводородов (пропана, пропилена, этана, этилена) Высокая концентрация этилена Высокая концентрация других углеводородов в сравнении с ацетиленом и водородом Высокая концентрация окиси углерода и двуокси ртлерода Преимуш,ественное содержание двуокиси углерода по сравнению с углеводородами Низкая концен рация окиси углерода и ацетилена по сравнению с другими углеводородами [c.241]

    Как видно, при горении воздушных газовых смесей при атмосферном давлении макс лежит в. пределах 0,40—0,55 м/с, а имакс — в пределах 0,3—0,6 кг/(м2-с). Лишь для некоторых низкомолекулярных непредельных соединений и водорода макс лежит в пределах 0,8—3,0 м/с, а макс достигает 1—2 кг/(м2-с). По увеличению макс исследованные горючие в смесях с воздухо1М можно расположить, в следующий ряд бензин и жидкие ракетные топлива, парафины и ароматические соединения, окись углерода, циклогексан и циклопропан, этилен, окись пропилена, окись этилена, ацетилен и водород. [c.78]

    Различными физическими методами доказано, что ацетилен gHg — простейший представитель гомологического ряда алкинов — имеет линейную молекулу, в которой длина углерод-углеродной тройной связи равна 0,120 нм, а длина связей углерод — водород — 0,106 нм  [c.180]

    Процесс сжигания примесей в газовых потоках проводят на факеле или в камерах. Сжигание на факеле применяют, когда теплота реакции горения превышает 1,9 МДж/м . Однако при этом возникает ряд проблем, одна из которых состоит в выделении значительного количества копоти из-за низкого содержания углерода в смеси углерод — водород. Во избежание этого в систему горения добавляют воздух и водяной пар. Гесс и Штикель [10] на примере ацетилена экспериментально определили минимально необходимые количества пара и воздуха, а также пределы цветности пламени, его стабильности и уровня шума. По результатам экспериментов построен график (рис. 2.6) зависимости массового расхода пара от объемного расхода смеси воздух — ацетилен для различных значений функции Ф  [c.87]

    Baum и Herrmann с помощью водородо-кислорюдного пламени в нефти получили ацетилен. Пламя окиси углерода—-водорода — кислорода в нефти ведет к образованию этана и ацетилена. Ацетилен можно также получить при горении кислорода или кислородсодержащего газа в атмосфере газообразного углеводорода ИЛИ путем погружения пламени в жидкий углеводород . На выход влияет соотношение углеводорода и кислорода, а также форма сосуда. Выход получается большим, если кислород вводить через отверстие малого (а не большого) диаметра выход увеличивается также при введении углеводорода через несколько отверстий в одно.м сосуде по сравнению с введением его через такое же число отверстий, расположенных по одному в отдельных сосудах. [c.1075]

    Найтингел и Уолкер 8] разработали метод одновременного определения углерода, водорода и азота быстрым сожжением (в течение 30 сек.) анализируемой пробы с помощью индукционной печи. В качестве окислителей использованы перманганат серебра и окись меди. Быстрое сожжение пробы с катализатором в потоке гелия позволяет непосредственно без предварительного концентрирования разделять простые продукты окисления в хроматографической колонке. Навеску анализируемого вещества, смешанного с окислителем, сжигали в угольном тигле, футерованном кварцем. Продукты окисления проходили через реактор, заполненный на /з окисью меди и на /з металлической медью для завершения окисления и восстановления окислов азота. Далее газовый поток проходил через реактор с карбидом кальция, где вода превращалась в ацетилен. Карбид кальция в реакторе заменяли новым перед каждым анализом. Смесь простых продуктов (азот, двуокись углерода, ацетилен) разделяли на хроматографической колонке с молекулярными ситами 5А. Среднее отклонение при определении углерода 0,52%, водорода 0,22%, азота 0,58%. [c.116]

    В предложенном Чумаченко и Пахомовой [10] методе одновременного определения углерода, водорода и азота с применением газовой хроматографии окисление вещества осуществляют окисью никеля при температуре 900—950° С в атмосфере гелия в герметично закрывающейся реакционной пробирке. Продолжительность сожжения 1—2 мин. Образовавшаяся вода превращается в ацетилен над карбидом кальция. Полученные азот, двуокись углерода и ацетилен разделяют на колонке, заполненной активированным углем при температуре 120° С, скорость газа-носителя 170 мл1мин. Точность определения 0,2%. [c.116]

    В присутствии платиновой черни ацетилен гидрируется водородом, превращаясь в этан С2Н2-1- 4Н = СгН . При этом расходуется 4 атома водорода, т. е. на 2 атома больше, чем при гидрировании этилена. Считают, что в ацетилене атомы углерода соединены тройной связью, которая, присоединяя 4 атома Н, преврашается в простую [c.475]

    В углеводородах, носящих название алкинов, или ацетиленов, между атомами углерода содержится тройная связь. С помощью различных физических методов показано, что ацетилен С2Н2, простейший представитель этого класса углеводородов, представляет собой линейную молекулу, в которой длина углерод-углеродной тройной связи равна 1,20 А и две связи углерод — водород имеют длину 1,06 А. [c.195]

    Наиболее существенные изменения необходимо внести в рассмотрение образования сажи из бензола и некоторых ненасыщенных алифатических соединений, таких, как бутадиен. Работы [148, 149] показали, что ацетилен едва ли не единственный предшественник углерода в диффузионном пламени. При пиролизе бензола при высоких температурах в первую очередь образуется диацетилен, ацетилен и водород [109, 150]. Кроме того, даже в очень короткие промежутки времени появляются некоторые замещенные дифенилы и смолы, которые могут давать вклад в процесс образования aиiи. Однако возможность образования сажи из бензола почти целиком связана с диацетиленом, равно как и с ацетиленом, причем при пиролизе диацетилена углерод образуется гораздо легче, чем из ацетилена [144]. Примерно так же обстоит дело при пиролизе бутадиена первоначально образуются полиеновые или полиацетиленовые структуры (а не ацетилен), из которых углерод выделяется гораздо быстрее. Поэтому можно безошибочно утверждать, что для быстрейшего образования сажи необходимо присутствие не самого ацетилена, а высших ненасыщенных алифатических соединений. [c.306]

    Аналогичным образом, соединяя два трехатомных остатка =С метин), получаем соединение С2Н2, называемое ацетиленом, которому обычно придается строение СН=СН с тройной связью между атомами углерода. Замещением в ацетилене атома водорода на метил получается его первый гомолог СНз—С=СН и далее новый гомологический ряд углеводородов, имеющих общий состав С Н2 2. [c.62]

    В тех условиях, прн которых водород соединяется с кислородом, он способен соединяться и с хлором. Смесь водорода с хлором взрывает при прО пускании искры, или чрез прикосновение с накаленным телом, а также в присутствии губчатой платины. Но, кроме того, для соединения водорода с хлором достаточно одного действия света если смесь равных объемов водорода и хлора выставить на действие солнечного света, то полное соединение совершается со взрывом, быстро. С углеродом водород прямо не соединяется ни при обыкновенной температуре, ни при действии жара и давления но если чрез угольные электроды, немного удаленные друг от друга (как при получении так называемой вольтовой дуги), пропускать гальванический ток так, чтобы образовалась светящаяся дуга, в которой частицы угля переносятся с одного полюса на другой, то, при том сильном жаре, которому подвержен в этом случае уголь, он способен соединяться с водородои. Из угля и водорода образуется при этом особый пахучий газ, называемый ацетиленом С-№. [c.432]

chem21.info

Ацетилен водорода гидрирование - Справочник химика 21

    По этой схеме 95—97%-ный этилен промывают щелочью для отделения кислых газов, затем гидрируют ацетилен. Для гидрирования используется водород, который содержится в метан-водородной фракции, получающейся нри деметанизации. После [c.174]

    Для ненасыщенных соединений хорошо изучены реакции присоединения к олефинам и ацетиленам. Каталитическое гидрирование ацетиленов обычно приводит к г ыс-олефинам (рис. 42), так как водород с поверхности катализатора приближается к тройной связи с одной стороны. Аналогично восстановление действием ВгНе с последующим гидролизом уксусной [c.81]

    Из литературы известно [1—18], что под действием электрических разрядов этилен может вступать в самые разнообразные реакции — превращение в ацетилен, метан, углерод и водород, гидрирование до этана, полимеризация в жидкие и твердые углеводороды и др. То или иное направление превращения этилена зависит от вида разряда и его мощности, а также от условий проведения опыта, в частности от давления в разрядной зоне. В связи с этим было интересно изучить поведение этилена в тлеющем разряде низкого давления в тех же условиях, в которых проводилось изучение превращения ацетилена. [c.60]

    От газов, содержащих ацетилен, необходимо предварительно его отделить чаш,е всего его отделяют селективным гидрированием в этилен. Таким путем ацетилен выделяется из газа почти количественно. Метан и водород можно отделять промывкой газовой смеси маслом, в котором растворяются углеводороды с двумя и большим числом углеродных атомов, метан и водород не абсорбируются маслом и удаляются из установки. Газообразные углеводороды выделяются [c.69]

    По некоторым данным, реакция гидрирования ацетилена (как в этилен, так и в этан) — первого порядка по водороду и нулевого (или отрицательного) — по ацетилену. Аналогичными кинетически- [c.240]

    Сероводород и СОг обычно удаляют абсорбцией диэтанолами-нами. Ацетилен можно удалять гидрированием его в присутствии катализаторов в этилен или экстракцией растворителями. Фирмы Галф , Келлог и др., например, применяют метод гидрирования. Гидрирование обычно проводится при температуре 120— 130 в присутствии окиси никеля или хрома в качестве катализаторов. Для гидрирования используется водород, образующийся в результате реакций пиролиза. [c.55]

    Например, из этилена можно получить за счет перераспределения водорода этан и ацетилен. Хотя такую реакцию можно рассматривать как сложную, состоящую из двух простых гидрирования и дегидрирования, она может протекать и в отсутствие водорода в реакционной среде, т. е. как простая. Из олефинов Сз и выше за счет перераспределения водорода можно получить не только ацетиленовые, но и диеновые углеводороды. [c.222]

    Пример реакции обратимого дегидрирования — получение ацетилена при высоких температурах. При понижении температуры в присутствии водорода ацетилен превращается в олефин или алкая. Избежать этой нежелательной реакции удается или очень быстрым охлаждением за счет впрыскивания воды в реактор (см. рис. 4), или очень быстрым охлаждением в сочетании с дезактивацией или пассивацией стенок реактора. Способы пассивации стенок реактора приведены выще. Быстрое охлаждение за счет впрыскивания воды или добавления пара обычно позволяет снизить температуру до значений, при которых гидрирование не идет или идет очень медленно. [c.139]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    Гидрирование. Присоединение водорода к ацетилену осуществляется в две стадии, и поэтому, подобрав условия и соответствующий восстанавливающий агент, можно остановиться на присоединении 1 моль водорода. [c.56]

    Непредельные соединения в присутствии платины или палладия присоединяют водород легко, что позволяет использовать данный метод для количественного определения кратных связей Тройная связь образует более прочные адсорбционные соединения с катализатором, вследствие чего гидрирование ацетиленов происходит ступенчато, вплоть до полного превращения тройной связи в двойную. Скорость гидрирования кратных связей существенно зависит от их положения в цепи, числа и природы заместителей. [c.235]

    Каталитическое гидрирование ацетиленов дает преимущественно (80—95%) цыс-изомеры. Причина этого очевидна оба атома водорода подходят к двойной связи с одной стороны — с катализатора. [c.430]

    Итак, при гидрировании ацетилена на никеле скорость реакции будет прямо пропорциональна парциальному давлению водорода и обратно пропорциональна парциальному давлению ацетилена. Скорость реакции будет понижаться с увеличением концентрации ацетилена в реагирующей смеси, чему отвечает отрицательный порядок реакции по ацетилену. Обратно пропорциональная зависимость скорости реакции от концентрации ацетилена обусловлена тем, что в результате конкурентной адсорбции ацетилен вытесняет с поверхности катализатора водород. Поэтому чем больше концентрация ацетилена в газовой смеси, тем в большей степени водород будет вытесняться с поверхности и тем с меньшей скоростью пойдет реакция. [c.63]

    Даже если бы в исходной смеси находится только ацетилен, то для его гидрирования потребовался бы водород объемом 300 мл, следовательно, водород взят в избытке, а ацетилен и этилен полностью превращаются в этан по реакциям (а) [c.227]

    Гораздо большее значение имеет парциальное (частичное) гидрирование ацетиленов. Возможность селективного осуществления этой реакции определяет, как правило, высокий выход олефинов. Наиболее подходящими катализаторами являются поверхностные палладиевые катализаторы, особенно частично дезактивированные ацетатом свинца (катализатор Линдлара, см. ГЗ), хинолином или гидроксидом калия, и никелевые катализаторы (скелетный, а также так называемые бориды никеля Р-1 и Р-2 и К1с-катализатор, получаемые восстановлением ацетата никеля соответственно борогидридом натрия в водно-спиртовом растворе и гидридом натрия в тетрагидрофуране в присутствии третичного амилового спирта). Скорость гидрирования тройной связи на этих катализаторах выше, чем двойной, в то время как на других катализаторах такого различия или нет, или, наоборот, двойная связь гидрируется с большей скоростью (особенно если это концевые связи). Замедление реакции гидрирования алкинов после поглощения 1 моль водорода значительно облегчает необходимое его дозирование. [c.43]

    При гидрировании к адсорбированной на катализаторе молекуле ацетиленового соединения атомы водорода переносятся и присоединяются со стороны поверхности катализатора, на которой они до того также были адсорбированы (рис. 1.2). Поэтому парциальное гидрирование ацетиленов с внутренней тройной связью приводит к образованию исключительно или, по меньшей мере, преимущественно термодинамически менее стабильных геометрических изомеров - 1/мс-алкенов и представляет собой удобный и высоко-стереоселективный метод их синтеза. Так, при восстановлении стеароловой кислоты на катализаторе Линдлара получается продукт, содержащий 95 % олеиновой кислоты (1/мс-изомер)  [c.44]

    В последнее время в промышленности получила распространение очистка газов от окиси азота и ацетилена каталитическим гидрированием. Этот способ привлекает внимание, так как в коксовом и конвертированном газах содержится значительное количество восстановителей (водорода, окиси углерода). В результате гидрирования ацетилен превращается в этилен или этан, а окись азота — в азот или аммиак, эти соединения не нужно удалять из газа, прошедшего стадию очистки. [c.435]

    Изз чению кинетики реакции гидрирования ацетилена и окиси азота на различных катализаторах посвящены многие работы [60, 84—87]. Установлено, что на никелевых, палладиевых и платиновых катализаторах реакция гидрирования ацетилена до этана имеет нулевой порядок по ацетилену и первый по водороду. [c.443]

    Е- или 2-олефины с довольно высокой степенью стереоселективности можно получить восстановлением ацетиленов литием в жидком аммиаке, а также алюмогидридом лития в эфире [14] или гидрированием с использованием в качестве катализатора системы палладий-углерод-сульфат бария-хинолин [15] (А-3) [16]. 2-Олефины получают также превращением ацетиленов в винилсиланы (А-4а) [17] и последующим стереоселективным обменом силильной группы на водород (А-46) [18]. [c.52]

    Но при гидролизе наряду с ацетиленом образуются и продукты его гидрирования - этилен, этан, метан и высшие углеводороды. Их образование связано с тем, что металлы, которые были двухвалентными в соответствующих карбидах, после реакции образуют гидроксиды со степенями окисления три. Следовательно, в ходе реакции появляются атомы водорода, которые частично гидрируют ацетилен  [c.27]

    Эта реакция, в которой водород выступает в качестве окислителя, была названа реакцией окислительного присоединения. Такие реакции входят в качестве отдельных стадий в механизмы многих каталитических процессов, например процесса гомогенного гидрирования ацетиленов и олефинов молекулярным водородом. [c.374]

    Очевидно, что протеканию реакции благоприятствует низкое давление, поскольку она идет с увеличением объема. Поэтому давление поддерживают на таком низком уровне, который лишь обеспечивает достаточную скорость потока газов. Как отмечалось ранее, давление желательно понижать, но в большинстве случаев этого не делают и реакцию проводят при 5—25 фунт/ /дюйм . Как и во всех процессах, в которых имеется возможность протекания обратной реакции, газы, выходящие из реактора, быстро охлаждают и стараются не допускать их контакта с катализаторами гидрирования. Эта реакция не является селективной, так как наряду с метаном и этиленом образуются пропилен, ацетилен, водород, бутадиен, бутан и жидкий продукт, называемый дриполеном. [c.145]

    Смеси ацетилен — водород проявляют при облучении те же особенности, что и смеси ацетилен — инертный газ, но происходит также и некоторое гидрирование [L41], Иначе ведут себя смеси ацетилен — кислород. При этом протекает не обычная полимеризация, а возникают различные полимерные продукты с общей формулой (СгНз) , а также двуокись и окись углерода [L41]. [c.109]

    Комплексы иридия(Т) также являются активными катализаторами процессов гидрирования [110]. Если в качестве катализатора используют т/)анс-1г С1(С0)(РРЬ)2, то этилен, пропилен и ацетилен подвергаются гидрированию при 40—60°. Колшлекс реагирует как с На, так и с С2Н4 с образованием продуктов, которые могут быть промежуточными соединениями в этой реакции. Лучшим катализатором этих реакций является 1гН(С0)(РР11з)д. Полагают, что в результате присоединения водорода и (или) субстрата образуются семикоординационные комплексы, менее стабильные, чем аналогичные шестикоординационные комплексы, полученные [c.125]

    Один из основных вопросов механизма превращения метана в ацетилен в электрическом раз])яде — это вопрос о природе активных центров реакции. Ввиду того что в спектре разряда в метане наблюдаются интенсивные полосы СН, а при больших плотностях разрядного тока также полосы j, Фишер и Петерс [277] (вслед за ними также и другие авторы) предположили, что в образовании С2Н2 участвуют как радикалы СН, так и радикалы j, причем один из путей образования ацетилена в зоне разряда связан с гидрированием дикарбоновых радикалов атомарным водородом, который также обнаруживается спектроскопически [309]. [c.181]

    Метан. Метан отходящих газов гидрогенизационных заводов в Гельзенкирхене и Шольвене перерабатывался на ацетилен электрокрекингом в Хюльсе. Общая продукция ацетилена превышала здесь 40 ООО т в год. Большая часть этого ацетилена перерабатывалась через уксусный альдегид, алдоль в дивинил. Но здесь же находилась и установка по гидрированию ацетилена в этилен над палладием на силикагеле, установка по выделению водорода глубоким холодом и др. В дуге напряжением в 7 ООО в получается ацетилен чистотой 97—98%. Его приходится подвергать весьма сложной очистке. Помимо водорода, окиси углерода и этнлена, такой ацетилен содержит следующие иримеси (вгр на 1 м ) H N 1—3, нафталина 1—3, бензола 1—6, диацетилена 15—20, сажи 20—25. Однако при этом процессе себестоимость ацетилена меньше, чем генерируемого из карбида кальцпя. [c.167]

    Для химической переработки выделенных из газа углеводородов используются, практически, все основные реакции органического и нефтехимического синтеза пиролиз, конверсия, окисление, гидрирование и дегидрирование, гидратация, алкилирование, реакции введения функциональных групп — сульфирование, нитрование, хлорирование, карбонилирование и др. Наряду с процессами разделения они позволяют получать на основе газообразного топлива водород, оксид углерода (II), синтез-газ, азотоводородную смесь, ацетилен, алкадиены, цианистый водород, разнообразные кислородсодержащие соединения, хлор, нитропроизводные и многое другое. В свою очередь эти полупрЬдукты являются сырьем в производстве многочисленных целевых продуктов для различных отраслей народного хозяйства высококачественного топлива, пластических масс, эластомеров, химических волокон, растворителей, фармацевтических препаратов, стройматериалов и др., как это показано ниже. [c.198]

    Очистка сьфого газа от ацетиленов и диенов имеет свои преимущества и недостатки. Необходимый для очистки водород всегда присутствует в газе, но это не столь уж отрадное явление, поскольку он способен вызвать "неконтролируемое" гидрирование. Селективное гидрирование экзотермично, и недостаточно тщательное регулирование температуры в адиабатическом неподвижном слое катализатора может привести к взаимодействию водорода и с моноолефинами, которое будет сопровождаться дополнительным выделением тепла и неконтролируемым гидрированием.  [c.190]

    Метай и этан в электрическо дуге расщепляются до ацетилена, водорода и этилена. Эти продукты кре)1 инга в электрической дуге разделяют дистилляцией или абсо1)бцней па метан, ацетилен, этап, этилен и водород. Полученный таким образом водород вместе с водородом, выделенным из коксового газ 1, используют при гидрировании угл.ч, а углеводороды, за исключением ацетилена и этилена, снова возвращают в процесс электрокрекипга. [c.126]

    Наконец, нужно указать на селективное гидрирование ацетилена в этилен, которое проводили в Германии во время второй мировой войны (в Хюльсе и Гендорфе) [29]. Ацетилен предварительно очищали от следов сероводорода и фосфористого водорода обработкой хлорной водой. Очищенный ацетилен гидрировали при 270° и атмосферном давлении водородом, взятым в 50%-ном избытке, в присутствии специального палладиевого катализатора (0,01 % металлического палладия на силикагеле). Входящие в реактор газы разбавляли водяным паром, а температуру процесса регулировали тем, что в реактор впрыскивали воду в точках, расположенных вдоль оси слоя катализатора. Выходящие газы содержали 65% этилена их конденсировали и разделяли ректификацией по системе Линде—Бронна. Выход этилена равнялся 85%, считая на ацетилен побочными продуктами являлись этан и ненасыщенные С4- и Св-углеводороды. [c.125]

    Гидрирование ацетиленовых углеводородов. Присоединение водорода к ацетилену протекает очень легко. В 1874 г. П. Вильде 130], пропуская ацетилен с водородом над платиновой чернью, [c.351]

    Гидрогенизация ненасыщенных углеводородов. 1,4.-Присоедине-ние. Гидрирование ацетиленов. Гидрирование ароматических углеводородов. Восстановление карбонильных соединений. Восстановление карбоновых кислот и их производных. Восстановление ароматических ьигросоединений. Бензидиновая перегруппировка. Восстановление алифатических нитросоединений. Сопряженное окисление — восстановление. Реакция Тищенко. Восстанавливающие агенты натрий, водород, цинк, амальгамы металлов, алкоголяты алюминия, алюминнйгидриды, иодистоводородная кислота. [c.100]

    Переработка этилена в большинстве случаев требует тщательной очистки его от ацетилена. Так, при производстве полиэтилена под высоким давлением и окиси этилена содержание С2Н2 не должно превышать 10 частей на 1 млн, частей [2], что соответствует 99,5—99,8%-ному удалению ацетилена. Селективному гидрированию подвергаются целиком газы пиролиза перед фрак-циопировкоп или же только этиленовая фракция. В первом случае ацетилен гидрируется водородом, содержащимся в газах пиролиза. В последнем случае для производства этилена высокой чистоты потребовалось бы введение водорода извне, а также новая ступень разделения газов кроме того, управление высокоэкзотермической реакцией гидрирования затрудняется [13]. Вследствие этого установка гидрирования ацетилена размещается обычно перед фракдпопировкоп, после очистки от кислых газов. [c.151]

    Сильно затрудняется или становится невозможным присоединение водорода при наличии большого числа арильных заместителей, как, например, в тетрафенилбу-тиндиоле или в ди-(трифенилметил)-ацетилене. Во всех других случаях, даже при наличии в молекуле аминогрупп [224, 249а, 250], каталитическое гидрирование дает хорошие результаты. [c.55]

    Реакции с ацетиленами. Циклоалкилирование тетрафторэтилена ацетиленами происходит с участием этиленовой и ацетиленовой групп енина. Среди образующихся продуктов находятся изомерные аддукты Ы тетрафтор-этилен/енин, а такнидентифицированы четыре продукта. Первый из них представлял собой 1-этинил-2,2,3,3-тетрафторциклобу-тан (X),образовавшийся в результате присоединения тетрафторэтилена к этиленовой связи моновинилацетилена. Соединение (X) содержит ацетиленовый водород, что доказывает реакция его с водным раствором нитрата серебра. Путем гидрирования (X) был превращен в 1-этил-2,2,3,3-тетрафторциклобутан, полученный независимым путем из [c.314]

chem21.info

Водородный атом - ацетилен - Большая Энциклопедия Нефти и Газа, статья, страница 1

Водородный атом - ацетилен

Cтраница 1

Водородные атомы ацетилена способны замещаться на металлы с образованием ацетиленидов.  [1]

Водородные атомы ацетилена способны замещаться металлами с образованием ацети-ленидов.  [2]

Замещение обоих водородных атомов ацетилена щелочными или щелочноземельными металлами достигается при более высоких температурах либо действием ацетилена на металл или его гидрид, либо отщеплением молекулы ацетилена от двух молекул ацети-ленида щелочного металла МССН. Муассан [2] приготовил карбиды К2С2, Rb2C2 и Cs2C2 при быстром нагревании соответствующих ацетиленидов, однако реакция сопровождалась разложением. Ботольфсен [14] нашел, что при нагревании аммиачного соединения ацетиленида кальция получается смесь карбида кальция с нитридом и другими примесями.  [3]

Замещение одного водородного атома ацетилена влияет на лабильность другого водородного атома. Введение одних и тех же заместителей в молекулу воды, ацетилена или аммиака дает одинаковый качественный эффект в отношении лабильности оставшегося атома водорода; например, фенол, фенилацети-лен, анилин имеют более подвижные водородные атомы, чем, соответственно, вода, ацетилен, аммиак.  [4]

Для замещения обоих водородных атомов ацетилена этими металлами необходимы особые, более жесткие условия.  [5]

Довольно точное представление о лабильности водородного атома ацетилена межно составить, сравнивая реакции обмена ацетиленида и других веществ, также содержащих лабильный водород, с солями, имеющими слабоотрицательный анион.  [6]

В таком случае замещение одного водородного атома ацетилена щелочным и щелочноземельным металлом, очевидно, должно значительно задерживать способность к замещению второго водородного атома.  [7]

Большая часть этих методов может быть использована для замещения как одного, так и обоих водородных атомов ацетилена. Во многих случаях последовательно могут быть введены два различных заместителя.  [8]

Химическая переработка ацетилена основана на реакции присоединения по кратным связям и реакции конденсации, обусловленной подвижностью водородных атомов ацетилена.  [10]

К первому типу относятся ацетилениды, сохраняющие в молекуле тройную связь и образующиеся путем замещения одного или обоих водородных атомов ацетилена металлами или металлоорганическими радикалами.  [11]

Медь, серебро, ртуть и золото, в отличие от щелочных и щелочноземельных металлов, имеют тенденцию к замещению обоих водородных атомов ацетилена уже при обыкновенной температуре. Рассмотрим теперь детально приготовление ацетиленидов этих металлов.  [12]

Для ацетиленовых углеводородов характерны реакции замещения некоторыми металлами атомов водорода, находящихся при углеродных атомах с тройной связью. Под влиянием sp - гибриди-зации, характерной для ацетиленовой группировки, водородные атомы ацетилена и моноалкилацетилена приобретают большую подвижность и как бы кислотный характер, легко подвергаясь замещению на металлы.  [13]

Веаль, 1864 г.), водородный атом ацетилена замещается натрием; образующееся мононатриевое производное ацетилена при дальнейшем нагревании с металлическим натрием превращается в динатрийацетилен.  [14]

Веаль, 1864 г.), водородный атом ацетилена замещается натрием. Образующееся мононатриевое производное ацетилена при дальнейшем нагревании с металлическим натрием превращается в динатрийацетилен.  [15]

Страницы:      1

www.ngpedia.ru

Водород ацетиленовый, определение - Справочник химика 21

    Для приближенной оценки удельной поверхности можно пользоваться адсорбцией из растворов, особенно адсорбцией иода в специально разработанных условиях. Преимущество этого метода заключается в простоте, скорости и возможности использования обычной аппаратуры. Однако он имеет определенные ограничения. Так, например, сажи с низким содержанием водорода (ацетиленовые или печные сажи типа S F) адсорбируют из раствора больше иода, а сажи с высоким содержанием кислорода (кислые) — меньше иода, чем обычные печные с примерно той же удельной поверхностью . Описание метода, позволяющего получить довольно точные значения удельной поверхности обычных печных саж, по данным адсорбции иода приведено в [c.270]     Графит. Рассчитано на основании данных экспериментов по определению микроволновым методом степени ионизации водородо-ацетиленового окислительного пламени при атмосферном давлении [c.36]

    Установлено, что отклонения от закона Рауля во всех системах, образованных углеводородами с одинаковым числом углеродных атомов Пс, являются положительными, причем зависимость коэффициентов активности компонентов и 72 от состава, как правило, имеет характер близкий к симметричному. Отклонения от закона Рауля тем больше, чем больше компоненты различаются по числу л-связей Пц, а-ацетиленовых атомов водорода пн и циклов Пц в молекуле. Определенное влияние, хотя и меньшее, чем указанные факторы, оказывает различие в пространственной структуре молекул. Для корреляции и предсказания фазового равновесия в углеводородных смесях предлагается использовать [c.665]

    Исследование потенциалов ионизации ацетиленовых углеводородов [302] позволило установить ряд закономерностей, хорошо согласующихся с квантово-механическими представлениями о характере тройной связи. Согласно этим представлениям тройная связь образуется за счет одной пары ст-электронов и двух пар л-электронов, что обеспечивает ее большую прочность по сравнению с двойной связью. Действительно, потенциал ионизации ацетилена равен 11,46 в, т. е. на 0,84 в выше ионизационного потенциала этилена. При введении алкильных заместителей в молекулу ацетилена наблюдаются зависимости в определенной степени аналогичные тем, которые наблюдались в ряду метановых и -этиленовых углеводородов. Замещение водорода метильным радикалом приводит к заметному снижению ионизационного потенциала. Дальнейшее увеличение алкильного радикала дает значительно меньший эффект. [c.182]

    Реакция присоединения брома к ненасыщенным соединениям находит широкое применение в органическом анализе для открытия и количественного определения этиленовых и ацетиленовых связей. Качественную пробу на наличие ненасыщенного соединения проводят следующим образом 0,1 г исследуемого вещества растворяют в 2 мл четыреххлористого углерода и добавляют по каплям 5%-ный раствор брома в четыреххлористом углероде. Обесцвечивание раствора брома без одновременного выделения бромистого водорода свидетельствует о присутствии ненасыщенного соединения.,  [c.559]

    Г идрирование как аналитический метод сыграло заметную роль в истории химии при установлении строения непредельных органических соединений. В настоящее время оно иногда используется для количественного определения степени ненасыщенности веществ, особенно смесей (например жиров), непредельных карбоновых кислот, ацетиленовых соединений и др. Степень ненасыщенности при этом обычно характеризуется так называемым числом гидрирования - массой водорода в граммах, необходимой для гидрирования 10 кг вещества. [c.15]

    Эффект резкого торможения коррозионного процесса молекулярным водородом был обнаружен в присутствии ацетиленовых соединений, ингибиторов БА-6 и ПКУ-К, ПКУ-4, катапина [45 98, с. 16 99 100, с. 163]. Учет этого явления может иметь определенное значение для выбора ингибиторов в кислых средах. [c.58]

    Определение хрома чаще всего проводят по линиям 357,9 нм [790, 810, 932, 1023, 1090, 1111, 1131] или 359, А нм [827] в пламенах ацетилен—воздух [159,665, 745, 763, 900, 943, 1116], ацетилен—КаО [810, 943], кислород—водород [204]. При анализе хрома в воздушно-ацетиленовом пламени возникают некоторые трудности [407], в основном связанные с присутствием в пробах железа и никеля. Они препятствуют увеличению чувствительности определения хрома в обогащенном топливом пламени. При использовании окислительного воздушно-ацетиленового пламени влияние этих элементов уменьшается, но зато снижается и чувствительность определения хрома. В окислительных пламенах не наблюдается разницы между степенью атомизации Сг(П1) и Сг(У1), в то время как в восстановительных пламенах Сг(1П) атомизируется полнее Сг(У1) [58]. Использование специально сконструированной кольцевой горелки водородно-воздушного пламени приводит к значительному понижению предела обнаружения хрома (до 0,004 мкг/ мл) [162]. [c.91]

    Для определения мышьяка используют различные пламена. Наиболее часто используется воздушно-ацетиленовое пламя [596, 818, 910, 1009, 1019, 1183]. Все пламена сами сильно погло-ш ают при длинах волн меньше 200 кл . Пламя смеси воздуха с водородом более прозрачно, чем пламя смеси воздуха с ацетиленом вплоть до 195 нм. В связи с этим для линии Аз 197,26 нм целесообразнее использовать пламя смеси воздуха с ацетиленом, а для линии Аз 189,04 нм — воздушно-водородное пламя. Для линии Аз 193,76 нм эти пламена обладают одинаковым поглош ением [369]. [c.102]

    При гидрировании также наблюдается меньшая скорость присоединения второй молекулы водорода. Однако в описанных выше методах различие в скорости присоединения первой и второй молекул водорода столь мало, что не вызывает затруднений в проведении реакции до конца. Тем не менее было показано, что при действии специального катализатора цинк — дезактивированный палладий — карбонат кальция гидрирование может останавливаться после присоединения одной молекулы водорода. Такое селективное 1 идрирование лежит в основе метода количественного определения ацетиленовой связи. [c.361]

    ОПРЕДЕЛЕНИЕ АЦЕТИЛЕНОВОГО ВОДОРОДА [c.377]

    Солями меди и ртути пользуются для количественного определения ацетиленового водорода, обычно их применяют в тех случаях, когда методы с участием серебра оказываются неприменимыми. [c.378]

    Влияние галогенидов и альдегидов на определение ацетиленового водорода иллюстрируют данные табл. 9.2. Галогениды в указанных в таблице количествах не мешают определению. После осаждения галогенида серебра легко наблюдается конечная точка титрования. Пробы, содержащие галогениды, анализировали также, проводя фильтрование галогенида серебра через грубую фильтровальную бумагу с последующим титрованием выделившейся кислоты в фильтрате. Хотя есть сведения о замещении ацетиленидов серебра галогенидами [2], здесь, по-видимому, такая реакция не происходит, поскольку благодаря сравнительно высокой концентрации ацетиленидов исключается наличие в реакционной системе избытка (свободных) галогенид-ионов. Альдегиды предположительно также не мешают анализу, так как значение pH раствора не настолько высокое, чтобы происходило восстановление иона серебра кажущиеся местные избыточные концентрации не оказывают влияния на анализ. [c.384]

    Применение концентрированных растворов соли серебра для определения ацетиленового водорода обладает рядом преимуществ. Отсутствие в реакционной системе осадков ацетиленидов, как правило, облегчает наблюдение конечной точки титрования, что особенно важно при анализе газовых проб, где осадки могут [c.385]

    Другой широко применяемый метод определения ацетиленового водорода основан на реакции хлорида меди(1) с ацетиленовыми соединениями в пиридиновом растворе, выделяюш,уюся при этом хлористоводородную кислоту титруют раствором ш.елочи  [c.390]

    Ускорение реакции при определенном содержании палладия на других носителях ранее наблюдалось при гидрогенизации бензола, ацетиленовых спиртов [45] и объяснялось из кинетических данных появлением новой возможности активации водорода за счет его растворения в палладии. Методом термодесорбции водорода нами получено количественное подтверждение этой точки зрения [2, 3]. Показано, что скорость восстановления нитросоединений возрастает при появлении и увеличении содержания в палладии растворенного, а в №-контактах — относительно слабо адсорбированного водорода (десорбируется до 300 ). [c.48]

    Систематическое изучение специфической адсорбции некоторых катионов на палладиевой черни и их влияния на сорбцию водорода и каталитическую активность палладия впервые начато Д. В. Сокольским с сотр. [1—4]. Авторы установили, что, модифицируя катализатор путем изменения строения двойного слоя, можно широко варьировать его избирательность и активность. Последнее представляет определенный практический интерес. В частности, катализатор, модифицированный катионами, можно использовать для селективного гидрирования ацетиленовых производных до виниловых [5]. [c.417]

    Источники пламени. Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя — воздух, кислород или оксид азота (I), Выбранная газовая смесь определяет температуру пламени. ВоЗ душно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200—2400 °С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Таких элементов большинство, и потому в дальней шем тексте, если нет специальных указаний, предполагается использование воздушно-ацетиленового пламени. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получе НИИ ацетилена такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. Прй определении элементов, образующих трудно диссоциирующие соа- [c.20]

    Для превращения растворов анализируемых веществ в атомный пар чаще всего применяют щелевые горелки длиной 5-10 см. Они дово п.но однотипны по конструкции и легко заменяются Большинство приборов рассчитаны на использование в качестве окислителей воздуха, кислорода и закиси азота, а в качестве топлива - гфопана, ацетилена и водорода Наибольшее распространение получило воздушно-ацетиленовое пламя (2200-2400 °С), которое позволяет определять многие высокотоксичные металлы (РЬ, Сс1, Zn, Си, Сг и др.). Для определения элементов с более высокой температурой парообразования (А1, Ве, Мо и др.) широкое признание получила смесь закись азота-ацетилен (3100-3200 С), поскольку она более безопасна в работе, чем смеси с кислородом. Для обнаружения мышьяка и селена в виде гидридов требуется восстановительное гшамя, образующееся при сжигании водорода в смеси аргон-воздух. [c.247]

    Соединения с тройной связью между атомами углерода по химическим свойствам очень близки к соединениям с двойными связями. Они легко присоединяют водород, галогены, галогеноводородные кислоты. При действии брома образуются тетрабромиды и дибромиды, а при действии иода образуются только дниодиды Н1С = С1Н. Поэтому для количественного определения соединений ацетиленового ряда пригодны методы анализа соединений с двойной связью, в частности, можно использовать определение йодного числа. [c.57]

    ГИДРИРОВАНИЯ ЧИСЛО, масса водорода (в г), необхо-димая для гидрирования 10 кг орг. в-ва. Характеризует степень ненасыщенности в-ва. При определении Г.ч. через р-р анализируемого в-ва в СН,СООН при т-ре до 140°С пропускают Н . Г.ч. = ЮОООк , где Г-объем поглощенного И2, приведенный к нормальным условиям (в мл), -плотность при нормальных условиях (8,988 10 г/см ). Иногда гидрирование проводят в присут. катализатора (платиновая чернь, никель Ренея, Рчистом виде и дополнительно исследовать (напр., провести элементный и функциональный анализ). Г. ч. определяют у жиров, карбоновых к-т с двойными связями в ое- и р-положениях, а также у соед. ацетиленового ряда, для к-рых не удается установить йодное число. Е.А. Боидарекыя. [c.554]

    В Советском Союзе в баллонах поставляются во5оро5, азот, аргон, гелий, кислород, хлор, аммиак, ацетилен, смесь пропана с бутаном, закись азота, фосген, х.гористый метилен и ряд других газов. Баллоны с наиболее употребительными газами окрашены в определенные цвета или маркированы цветными полосами. Кроме того, некоторые баллоны различаются по типу резьбы запорного вентиля. Так, в отличие от всех других баллонов баллоны с водородом, этиленом, пропаном и некоторыми другими горючими газами имеют левую резьбу запирающих вентилей. Помимо разницы в резьбе, некоторые баллоны различаются и по способу крепления вентилей тонкой регулировки. Так, например, редукторы для ацетиленовых баллонов приворачиваются при помощи специальных узлов. [c.620]

    Настоящая работа предусматривает исследование фтор-хлорпроизводных этана и этилена, содержащих в молекуле один атом водорода. В настоящем исследовании выяснялась способность фтора задерживать или даже полностью приостанавливать отщепление двух галоидных атомов или одной молекулы галсидсводородной кислоты с переходом к этиленовому или ацетиленовому соединению. Описанные ниже соединения можно наглядно представить себе как производные пентахлорэтана и трихлорэтилена с постепенной заменой атомов хлора атомами фтора однако при фактическом приготовлении этих веществ необходимо в некоторых случаях итти окольным путем, так как введение фтора в эти хлориды идет по некоторым определенным правилам и имеется стремление образовать асимметрические соединения в противоположность случаям, отмеченным ранее. [c.71]

    В эмиссионной фотометрии анализируемый раствор распыляют в высокотемпературное пламя и фотометрируют излучение линии Сс1 3261,0 А. Сами пламена сильно излучают в этой области спектра, поэтому необходимо выбирать такое пламя, при котором отношение интенсивности линии к излучению фона имеет наибольшую величину. Это достигается в смеси водорода с воздухом. При использовании комбинированной горелки-распылителя (кислородно-ацетиленовое пламя) чувствительность определения составляет 0,5 мкг СА1мл [336]. [c.129]

    Недостатки методов определения ацетиленовых соединений заключаются, главным образом, в том, что анализу мешают галогениды, цианиды, сульфиды и в следовых количествах (до 0,01%) альдегиды. Эти примеси потребляют на 1 моль 1 ион серебра галогениды и сульфиды — вследствие образования солей серебра, цианиды — в результате образования комплексного иона, альдегиды восстанавливают ион серебра в металлическое серебро. Следы альдегидов искажают результат определения азотной кислоты, выделяющейся из нитрата серебра, так как образующееся металлическое серебро полностью маскирует переход окраски в конечной точке титрования. В описываемом ниже методе с использованием в качестве реактива меркуриодида калия небольшие количества альдегидов (до 0,5%, считая на формальдегид) допустимы. Однако так как меркуриодид калия окисляет альдегиды, то количества их более 0,5% уже начинают оказывать влияние на результаты определения ацетиленового водорода. [c.391]

    При анализе функциональных групп в соединении 2 также было обнаружено наличие или отсутствие исходных групп. Определение эквивалентной массы , соответствующей каждой из имеющихся групп, показало, что на каждую ацеталеподобную группу приходятся две тройные связи (или, что, менее вероятно, четыре двойные). Было очевидно, что молекулярная масса равна по меньшей мере эквивалентной массе в расчете на ацеталь с двумя ацетиленовыми водородами и двумя тройными связями, или является кратной этому значению. Учитывая эти данные анализа, а также зная, что в реакционной смеси находились пропаргиловый спирт и формальдегид и что они образуют формали в слабо кислотной среде (какой была исходная смесь), легко было сделать заключение о строении соединения 2. [c.621]

    Для анализа используют воздушно-ацетиленовое пламя [611, 1074, 1412], ацетилено-кислородное [750], водородно-кислородное 880, 881, 887], а также воздушное пламя, насыщенное смесью аргон — водород (чувствительность 0,02 мкг (л 1мл )[1440а]. При использовании пламенного спектрофотометра на основе монохроматора УМ-2 и воздушно-ацетиленового пламени чувствительность открытия галлия (Х=4172,06 А) равна 2 мкг мл [406]. Чувствительность определения галлия с ацетилено-кислородным или водородно-кислородным пламенем значительно повышается при добавлении к испытуемому раствору ацетона [664]. К сожалению, точные указания о границах чувствительности при обнаружении галлия методом фотометрии пламени отсутствуют. Вместо непосредственного обнаружения галлия в спектре пламени его растворов можно применить катодное осаждение галлия на меди или угле с последующим анализом в дуге [1296]. [c.29]

    Ацетиленовые углеводороды гидрируются на Pd и Pt еще легче, чем олефино-вые. При ограниченном количестве водорода или малом времени контакта удается избирательно гидрировать алкины до алкенов, избежав полного гидрирования. Особенно хорошими в этом отношении являются катализатор Линдлара (Pd на СаСОд с добавкой РЬ (СНзСОО)2) и родиевый катализатор. Изучались также гидриды переходных металлов [1261 и определен ряд каталитической активности для гидрирования стирола РеН > NiH > СоН , где п = 1—3. Бориды Pd, Pt, Rh при гидрировании циклогексена, кротонового и коричного альдегидов оказались активнее соответствующих металлов [127]. Общепринятые катализаторы гидрирования, включающие преимущественно металлы VIII группы периодической системы элементов, широко освещены в литературе. Имеется ряд монографий [55, 95, 128—132] и много публикаций с подробным описанием свойств этих катализаторов, их приготовления, условий применения и пр. [c.68]

    Описан микрометод определения ацетиленового водорода, основанный на взаимодействии монозамещенных ацетилена с А СЮ4. Реакцию проводят в среде метилового спирта и выделившуюся НСЮ4 титруют раствором триоксиметиламинометана [560]. [c.169]

    Водород в качестве горючего газа применяют очень редко. Это объясняется низкой температурой водородного пламени и отсутствием такого энергичного восстановителя, как углерод, вследствие чего диссоциация многих соединений происходит не полностью, а результаты анализа подвержены большим помехам. Водородное пламя практически невидимо. Кроме того, по сравнению с другими газами, водород обладает значительно большей способностью проникать через неплотности. Поэтому при работе с ним требуется особая осторожность. Но водородное пламя, в отличие от ацетиленового и пропанового пламен, очень прозрачно в коротковолновой области спектра (200 нм и меньше). Поэтому водородное пламя успешно используют для определения элементов, наиболее интенсивные резонансные линии которых расположены в области коротких волн (селена, мышьяка). Водородное пламя удобно для определения гидридобразующих элементов, так как они перед тем, как попасть в пламя, отделяются от основы. Благодаря этому значительно уменьшаются помехи. Кроме того, для диссоциации гидридов достаточно умеренного нагрева. [c.35]

    Простейшие углеводороды парафинового ряда газообразны. При нормальных условиях они встречаются в громадных количествах в так называемом естественном газе, который часто сопутствует нефти. Естественные газы, которые можно рассматривать как газообразную нефть, также проявляют большие различия в химическом составе однако они большею частью состоят из низших парафинов, именно метана, этана, пропана, с небольшими количествами бутана, пентана и других углеводо родов вплоть до октана они содержат также примеси азота, углекислого газа, сероводорода и — в редких случаях — гелия В газах находящихся в контакте с нефтями ароматического или нафтенового основания, в небольших количествах присутствуют также пары ароматических и циклопарафиновых (нафтеновых) углеводородов. Так Erskine i нашел, что- образец пенсильванского газового бензина, полученного путем адсорбции, содержал 0,6% бензола, 0,6% толуола и 1,2% т-ксилола. В естественных газах предполагается присутствие циклопропана и циклобутана, хотя это и не доказано с полной определенностью С другой стороны, в естественном газе никогда не были найдены представители олефиновых или ацетиленовых углеводородов, а также окись углерода и водород, которые являются характерными продуктами пиролиза. [c.20]

    Примечания. 2, 3. Сорбент № з немного более полярен. 5, 6. Сажа обработана водородом при 1000 °С с целью деактивации. Сорт сажи № 6 предназначен для определения ультрамалых количеств S oдepжaщиx газов (НаЗ, ЗО и СНзЗН). 9. Насыпная плотность 0,7 г/см . 10. Ацетиленовая сажа (образуется при температуре 2500 °С по свойствам близка к графитированной) с добавкой 5% термоустойчивого высокомолекулярного вещества. Насыпная плотност ь [c.41]

chem21.info

Ацетиленовые соединения водорода - Справочник химика 21

    Г идрирование как аналитический метод сыграло заметную роль в истории химии при установлении строения непредельных органических соединений. В настоящее время оно иногда используется для количественного определения степени ненасыщенности веществ, особенно смесей (например жиров), непредельных карбоновых кислот, ацетиленовых соединений и др. Степень ненасыщенности при этом обычно характеризуется так называемым числом гидрирования - массой водорода в граммах, необходимой для гидрирования 10 кг вещества. [c.15]     При гидрировании к адсорбированной на катализаторе молекуле ацетиленового соединения атомы водорода переносятся и присоединяются со стороны поверхности катализатора, на которой они до того также были адсорбированы (рис. 1.2). Поэтому парциальное гидрирование ацетиленов с внутренней тройной связью приводит к образованию исключительно или, по меньшей мере, преимущественно термодинамически менее стабильных геометрических изомеров - 1/мс-алкенов и представляет собой удобный и высоко-стереоселективный метод их синтеза. Так, при восстановлении стеароловой кислоты на катализаторе Линдлара получается продукт, содержащий 95 % олеиновой кислоты (1/мс-изомер)  [c.44]     Описываемый метод синтеза применим к соединениям, содержащим активный водород, таким, как альдегиды [18], кетоны [19—22], кислоты [23], сложные эфиры [24], нитроалканы [25—28], фенолы, имеющие свободное орто- или пара-положение [29], пиррольные соединения (пример 6.2), некоторые гетероциклические соединения с а- или у-метильными группами [30—32] и ацетиленовые соединения [33] (пример 6.5). [c.526]

    В дальнейшем рядом авторов было найдено, что для окислительной конденсации медных производных ацетиленовых соединений можно применять разнообразные окислители воздух, кислород, перекись водорода, соли двухвалентной меди, перманганат калия и красную кровяную соль. [c.240]

    Селективное каталитическое гидрирование ацетиленовых углеводородов. Способ базируется на большом различии скоростей гидрирования углеводородов разной степени непредель-ности при применении селективных катализаторов главным образом это катализаторы на основе палладия и никеля, нанесенные на оксид алюминия или другие носители. С их помощью удается снизить массовое содержание ацетиленовых соединений от 0,1—0,6 до 0,01—0,02%. При этом гидрируется 1—2, иногда до 4—8% бутадиена. Очистка фракций С4 после дегидрирования н-бутиленов с массовым содержанием бутадиена до 30% и ацетиленовых соединений до 0,1% на катализаторе никель на кизельгуре осуществляется при 18 °С, давлении 0,5 МПа, объемной скорости фракции 10 ч > и подаче водорода 20 моль на 1 моль ацетиленовых соединений (в пересчете на [c.59]

    Защитное действие ацетиленовых соединений, содержащих другие функциональные группы с гетероатомами 8, О, N определяется взаимным расположением в молекуле тройной связи и соответствующей функциональной группы. Например ацетиленовые диамины типа =Ы —СН2-С= С —СНа—Ы= намного менее эффективны, чем соответствующие амины с концевой тройной связью типа = Ы —СН2 —С=СН. По защитному действию в соляной кислоте по отношению к углеродистой стали ацетиленовые соединения можно расположить в ряд [81, с. 30] вторичные спирты > первичные спирты > эфиры > тиоэфиры > третичные спирты > углеводороды. Отмечено, что прн а-расположении азота по отношению к тройной связи наблюдается внутримолекулярный антагонизм, при более удаленном расположении от этинильного водорода — усиление защитных свойств. [c.45]

    Эффект резкого торможения коррозионного процесса молекулярным водородом был обнаружен в присутствии ацетиленовых соединений, ингибиторов БА-6 и ПКУ-К, ПКУ-4, катапина [45 98, с. 16 99 100, с. 163]. Учет этого явления может иметь определенное значение для выбора ингибиторов в кислых средах. [c.58]

    Все исследованные ацетиленовые соединения количественно присоединяют на один атом серебра более, чем должно соответствовать числу атомов водорода в ацетиленовом соединении. Это было подтверждено многими Исследователями [1]. Метод дает результаты, воспроизводимые с точностью 0,5 7о. [c.378]

    Другой широко применяемый метод определения ацетиленового водорода основан на реакции хлорида меди(1) с ацетиленовыми соединениями в пиридиновом растворе, выделяюш,уюся при этом хлористоводородную кислоту титруют раствором ш.елочи  [c.390]

    Хроматографическая колонка длиной 10 м, внутренним диаметром 5 мм. 4 м колонки заполнены 20% динонилфталата на ИНЗ-600 (от массы носителя) 6 м — 20% диоктилсебацината на том же носителе Баллон с мановакуумметром от 100 до 300—500 кПа вместимостью 4—5 л Шприц медицинский вместимостью 2 и 5 мл Азот, водород, воздух, осушенные и очищенные от примесей Ацетилен, пропадиен, метилацетилен, хроматографические чистые Этилен и пропилен, не содержащие ацетиленовых соединений [c.17]

    Таким образом, на примере винилацетиленовых углеводородов и ацетиленовых окисей со свободным ацетиленовым водородом результатами наших исследований подтверждено недавно открытое явление межмолекулярного взаимодействия в ацетиленовых соединениях. [c.293]

    Кислотные компоненты, содержащие активный водород. При реакциях типичных ацетиленовых соединений наблюдаются следующие явления в присутствии спиртовых растворителей практически единственным продуктом реакции при применении уксусной кислоты является свободная а-метиленовая кислота, но по мере увеличения крепости кислотного компонента, содержащего активный водород, увеличивается количество образующихся сложных эфиров. [c.61]

    СООН в эффективности защиты у играют второстепенную роль по сравнению с тройными связями. Предполагают, что механизм действия ацетиленовых соединений связан с восстановлением тройной связи выделяющимся в начальной стадии коррозионного процесса водородом. [c.153]

    Эти соединения также сильно снижают емкость электрода. Низкая емкость свидетельствует, по мнению авторов, о заполнении почти всей поверхности металла молекулами вещества с низкой диэлектрической проницаемостью и об образовании фазовой пленки. В присутствии этих соединений повышается перенапряжение выделения водорода и ионизации металла, а стационарный потенциал смещается в положительную сторону. Область потенциалов, при которой изученные ацетиленовые соединения адсорбируются, получается довольно большой, если принять точку нулевого заряда железа равной —0,37 В. Они адсорбируются как на отрицательно заряженной поверхности, так и на положительно заряженной. [c.207]

    Электронные представления об ацетиленовой связи и, атома водорода. Реакция Кучерова. Механизм гидратации тройной связи. Правило Марковннкова. Реакция присоединения ацетилена к карбонильным соединениям. Димеризация ацетилена. Спектры (ПМР, ИК, УФ) ацетиленов. [c.249]

    С—С-связи. Приходится лишь учитывать такие особенности, как, например, возможность образования взрывчатых адетнленидов тяжелых металлов, характерное для ацетиленовых соединении, и большее потребление водорода вследствие большей ненасыщенности соединении. Обычно присоединение первой грамм-молекулы водорода происходит легче, чем дальнейшее гидрирование до насыщенного соединении. Этим объясняется то, что для гидрирования С=С-свяэи можно почти всегда применять методы, описанные в предыдущем разделе. [c.52]

    Ацетиленовые соединения типа енинов (С С—С=С) и диенииов (С—С—С=С—С — С) также обладают способностью к присоединению. Как и при реакции Дильса— Альдера, происходит 1,4-присоединенке, однако с одновр перемещением атома водорода  [c.701]

    Присоединение галоидоводородных кислот к ацетиленовым соединениям проходит ступенчато. В первой стадии реакции присоединяется одна молекула галоидоводородной кислоты (НХ) и образуется производное галоидовинила, которое реагирует с другой молекулой НХ по правилу Марковникова. Ацетилен с хлористым водородом (или бромистым водородом), в зависимости от условий реакции, образует хлористый (бромистый) винил или хлористый (бромистый) этилиден. Реакцию проводят путем нагревания под давлением ацетиленового соединения с насыщенным при температуре 0° водным раствором галоидоводородной кис-лоты 7. з8 Реакция идет лучше в присутствии катализаторов, например сулемы и полухлористой меди . Хлористый и бромистый водород к ацетилену и его- низшим гомологам присоединяются также в газовой фазе при температуре 120—350° в присутствии хлоридов или бромидов тяжелых металлов, осажденных на силикагеле, активированном угле или асбесте особенно активны хлорид и. бромид ртути  [c.562]

    С пространственной изомерией мы сталкиваемся в продуктах гидрнровапнн ароматических, алнцикличе-ских и ацетиленовых соединений Согласно указанным правилам, следует ожидать, что гидрирование кольца у проиэводиых бензола или циклогексена приведет к образованию г ис-изомеров Но в чистом виде их получают только прн очень мягких условиях реакцин. Длительное восстановление прн высоких температурах создает возможность образования продукта с преобладанием транс изомера, обычно более устойчивого С гери-ческие факторы могут, однако, предотвращать изомеризацию [477—480] (здесь цитируются только наибо чее интересные работы по этому вопросу). Сделанные замечания в равной мере касаются и алициклических кетонов [477]. Устойчивость молекул производных стероидов способствует присоединению водорода в одном направлении, благодаря чему часто образуется только один из возможных изомеров [481, 482] [c.346]

    Клебанский с сотрудниками поэтому считают, что в щелочной среде реакция Глязера протекает через стадию ионизации ацетиленового соединения, определяющую суммарную скорость процесса ионизация легче идет в присутствии основания (1) и ионов меди и при подвижном ацетиленовом водороде. Следующая стадия (2), формально представляющая собой перенос одного электрона от этинильного аниона к иону двухвалентной меди, приводит к образованию этинильного радикала, который, можно предположить, обладает высокой реакционной способностью и немедленно димеризуется (3). [c.262]

    Триалкилсилилирование используют как метод защиты связей углерод —водород в ацетиленовых соединениях. [c.363]

    При кипячении с водой озониды обычно образуют перекись водорода, присутствие которой может быть легко доказано реакцией с хромовой кислотой и эфиром или с титановой кислотой. Лишь в немногих случаях не удалось доказать присутствия перекиси водорода. Так например не доказано образование перекиси водорода при кипячепии с водой озонидов бензола и его гомологов 1 , а таюке озонидов ацетиленовых соединений Также не удалось доказать образование перекиси водорода в тех случаях, когда первично образуются значительные количества перекисей [c.83]

    При кипячении озонидов с водой образуются наряду с перекисью водорода также главным образом альдегиды и кетоны, присутствие которых может быть доказано обычными характерными для них реакциями. Благодаря образованию альдегидов водный раствор приобретает свойство восстанавливать раствор Фелинга и обесцвечивать фуксинсернистую кислоту. Этого конечно не бывает, когда при разложении озонидов водой образуются одни кетоны. Присутствие кетонов доказывается поэтому реакциями присоединения. Восстановительные реакции также не имеют места при paзJЮж нии озонидов ацетиленовых соединений, так как при зтом образуются исключительно карбоновые кислоты. [c.83]

    В присутствии ингибиторов, как было отмечено Н. И. Подобаевым [95 с. 16 99], тормозящее действие газообразного водорода на коррозионный процесс может проявиться в еще большей степени. Образующиеся на поверхности металла защитные полимолекулярные пленки (папример, при ингибировании ацетиленовыми соединениями) будут затруднять отвод мэлекулярного водорода с поверхности. И.меющиеся в пленке дефекты и поры будут заполняться молекулярным водородом, через некоторое время наступит их полное насыщение и диффузия ионов гидроксония резко замедлится. Это приведет к значительному увеличению перенапряжения и торможению коррозионного процесса. При этом эффект торможения будет определяться толщиной пленки ингибитора, ее дефектностью, скоростью образования и насыщения пленки молекулярным водородом, скоростью его удаления. [c.58]

    Введение ингибиторов в агрессивные кислые среды в большинстве случаев улучшает механические свойства сталей и сплавов за счет снижения в них содержания водорода. Эффективно тормозят наводороживание многие азотсодержащие соединения (производные пиридина, гексаметиленимина, имидазолины, шиффовы основания, триазины, высокомолекулярные амины и полиамины, четвертичные аммониевые соли и т. п.), фосфониевые соли, ацетиленовые соединения. Как правило в присутствии этих добавок улучшаются и механические свойства сталей. Ниже приведены некоторые примеры подобного влияния ингибиторов. [c.83]

    Для большинства азотсодер>кан их ингибиторов катионного типа, химически адсорбирующихся на поаерхности стали или ацетиленовых соединений, претерпевающих на поверхности превращения, наиболее вероятным является первый путь. Так, производные гексаметиленимина. ингибиторы ПКУ, БА-6, КПН-1, КПИ-3, пропаргиловые эфиры фенола, образуя на поверхности плотные хемосорбционные (азотсодержащие соединения) или полимерные пленки (ацетиленовые соединения) препятствуют проникновению ионов гидроксония к поверхности металла. Торможение катодного процесса приводит к снижению количества разряжающих ионов гидроксония н соответственно доли водорода, проникающего в металл. Высокий защитный эффект от наводороживания оксиэтилированными азотсодержащими бензосульфонатами объясняется [149] способностью их переносить электронную плотность на металл, что ослабляет связь Ме — Ни затрудняет разряд, ионов гидроксония. В некоторых случаях, разряд и рекомбинапия атомов водорода, возможно протекает не на металле, а на самой пленке ингибитора илн продукта его прсврап1ения, как это предполагается в [148]. Однако с этих позиций трудно объяснить слабое торможение наводороживания, а в некоторых случаях даже стимулирование его некоторыми анионоактивны.мн добавками, хотя они № образуют на поверхности металла защитные адсорбционные пленки. [c.90]

    Настоящая работа предусматривает исследование фтор-хлорпроизводных этана и этилена, содержащих в молекуле один атом водорода. В настоящем исследовании выяснялась способность фтора задерживать или даже полностью приостанавливать отщепление двух галоидных атомов или одной молекулы галсидсводородной кислоты с переходом к этиленовому или ацетиленовому соединению. Описанные ниже соединения можно наглядно представить себе как производные пентахлорэтана и трихлорэтилена с постепенной заменой атомов хлора атомами фтора однако при фактическом приготовлении этих веществ необходимо в некоторых случаях итти окольным путем, так как введение фтора в эти хлориды идет по некоторым определенным правилам и имеется стремление образовать асимметрические соединения в противоположность случаям, отмеченным ранее. [c.71]

    Онисание нроцесса. Катализаторы избирательного гидрирования ацетиленовых соединений, содержащихся в газах пиролиза, приготовляют на основе элементов шестой и восьмой групп периодической системы. В частности, было предложено [4] применять сульфид молибдена на активированном окисноалюминиевом носителе. В США для очистки газов пиролиза, содержащих избыток водорода, в качестве катализаторов чаще всего применяют молибдат кобальта [33], никелевые [34] и никель-кобальт-хромовые [35] катализаторы. Эффективность конверсии и избирательность каждого из этих катализаторов зависят главным образом от состава поступающего 1 аза и продолжительности контакта. Как правило, эффективность возрастает с повышением парциального давдения водорода и увеличением продолжительности контакта и снижается й. увеличением парциального давления метана, возрастанием молекулярного веса углеводородов и увеличением содержания серы в газе. Избирательность возрастает с уменьшением парциального давления водорода и этилена, уменьшением продолжительности контакта и увеличением содержания серы в газе [32]. [c.336]

    Катализаторы типа молибдата кобальта применяют для удаления ацетиленовых соединений из газов пиролиза — обычно после выделения ароматических углеводородов и кислотных газов. Промышленный процесс чаще всего проводят при следующих условиях давление 5,2—15,7 ат и выше, температура 177—316° С, объемная скорость 500—1000 ч . Для повышения избирательности гидрирования ацетиленовых углеводородов и снижения скорости образования полимерных отложений во время реакции к поступающему газу добавляют водяной пар. По мере образования полимерных отложений активность катализатора постепенно снижается и, в конце концов, необходимо его регенерировать. Снижение активности можно компенсировать, прогрессивно повышая температуру процесса. Катализатор в известной мере отравляется небольшими количествами сернистых соединений, содерн ащимися в газе, но вредное влияние серы также можно устранить повышением температуры процесса. Загрязненный катализатор регенерируют (обычно после 4—6 недель работы) обработкой водяным паром или смесью водяного пара с воздухом и последующим восстановлением водородом прп 400—455° С [32]. Содержание ацетиленовых углеводородов удается снизить с 1—2% до менее 0,001% при крайне незначительной потере олефинов. [c.338]

    Как указывалось выше, для удаления сравнительно небольших количеств ацетиленовых соединений из олефиновых потоков применяются палладиевые (простой и промотированный) катализаторы. Основное преимущество удаления ацетилена из очищенного потока — уменьшение размеров установки — частично утрачивается из-за более высокой стоимости катализатора. Бутадиен на этом катализаторе не гидрируется и его дюжно выделить из очпщепного газового потока. Применяемые катализаторы активны при давлении выше 7 ат, температуре примерно 66—177° С и объемной скорости 1000—5000 Для гидрирования ацетиленовых соединений требуется избыток водорода, примерно в 2—4 раза превышающий стехиометрическое количество этот водород добавляют к поступающему газу [27, 32]. При гидрировании в результате взаимодействия с избытком водорода теряется небольшое количество целевого олефина. Типичные условия проведения процесса на катализаторе рассматриваемого типа показаны в табл. 13.11 [27]. [c.338]

    Наиболее легко замещают ацетиленовый атом водорода серебро, медь(1) и ртуть. Ацетилениды практически нерастворимы, и осаждение протекает количественно, если молекула соединения пе содержит таких солюбилизирующих групп, как —ОН, — OONa, —SOsNa. В сухом виде ацетилениды взрывчаты, однако чувствительность их понижается по мере повышения молекулярной массы соединения. [c.377]

    Недостатки методов определения ацетиленовых соединений заключаются, главным образом, в том, что анализу мешают галогениды, цианиды, сульфиды и в следовых количествах (до 0,01%) альдегиды. Эти примеси потребляют на 1 моль 1 ион серебра галогениды и сульфиды — вследствие образования солей серебра, цианиды — в результате образования комплексного иона, альдегиды восстанавливают ион серебра в металлическое серебро. Следы альдегидов искажают результат определения азотной кислоты, выделяющейся из нитрата серебра, так как образующееся металлическое серебро полностью маскирует переход окраски в конечной точке титрования. В описываемом ниже методе с использованием в качестве реактива меркуриодида калия небольшие количества альдегидов (до 0,5%, считая на формальдегид) допустимы. Однако так как меркуриодид калия окисляет альдегиды, то количества их более 0,5% уже начинают оказывать влияние на результаты определения ацетиленового водорода. [c.391]

    ВИДНО, что такое соединение не имеет требуемого соотношения атомов углерода и водорода. Для алициклического соединения соотношение должно составлять СпНгп нли С13Н26. Простые олефиновые или ацетиленовые соединения с числом двойных или тройных связей, достаточным для того, чтобы понизить отношение водорода к углероду до имеющегося у соединения В, исключаются, поскольку они неустойчивы к окислению. [c.543]

    Такой синтез позволил получить ряд соединений и даже испытать их в поле, но оказался недостаточно технологичным для промышленного получения феромонов из-за трудности стереоспецифичного восстановления дизамещенных ацетиленовых соединений. В настоящее время существуют катализаторы, пригодные для этой цели, но необходимость использования водорода, повышенных давлений и недостаточная избирательность восстановления тройной связи до (Z)- или (Е)-олефинов часто сводят на нет преимушества промышленного синтеза феромоноа. [c.777]

    Хорошую селективность действия при гидрогенизации диеновых соединений показал никель в работе Платэ и Стаико [173]. В спиртовом растворе при 20° С и 70—80 атм в течение 2 час. гидрогенизация циклопеитадиена после поглощения одного моля водорода привела к получению 70% циклопентена. Фрейдлин и Полковников [174] исследовали влияние пиридина наскэ-рость и избирательность гидрогенизации циклопеитадиена и то-лана в присутствии никеля. Авторы нашли, что пиридин отравляет катализатор, способствует уменьшению скорости и увеличению избирательности гидрирования диеновых и ацетиленовых соединений до этиленовых. [c.151]

    Доказательства в пользу вторичного ингибирующего эффекта получил Полинг [90], который методом ИК-спектроскопии обнаружил защитные полимерные пленки на поверхности железа после его пребывания в соляной кислоте, содержавшей ацетиленовые соединения пропаргиловый спирт и этшшлциклогексанкарбинол. По мнению автора, реакциями, приводящими к вторичному ингибирующему эффекту ацетиленовых соединений, является процесс гидрогенизации ацетиленовых ингибиторов водородом и каталитическое гидрирование ацетиленов при реакции полимеризации карбоксильных соединений  [c.154]

chem21.info