Большая Энциклопедия Нефти и Газа. Гидролизная сварка


СВАРКА… ВОДОЙ | МОДЕЛИСТ-КОНСТРУКТОР

Я давний подписчик вашего журнала, многое использую из напечатанного в нем. Особенно мне понравилась статья «Огонь… из воды», напечатанная в «М-К» № 7, 1980. По описанию изготовил электролизёр, и он стал необходимым инструментом в моей мастерской.

Однако вскоре конструкция вызвала разочарование. Большая (20 кг) масса электролизёра, почти такая же — источника питания, недостаточная для некоторых работ производительность, быстрый нагрев при работе, наличие напряжения на неизолированных электродах, постоянные протечки электролита через стыки, вспенивание и выброс электролита в затвор и горелку, быстрое растворение электродов — все эти недостатки нужно было устранять.

В результате появилась конструкция, избавленная от перечисленных недостатков. Предлагаемый электролизёр работает уже много лет без нареканий. Конструкция его достаточно проста, а многократное облегчение достигнуто за счёт уменьшения расхода материалов (кроме электролита).

Аппарат понравился многим моим друзьям и знакомым, изготовлено ещё несколько экземпляров (названных в шутку «плазмотронами»: название прижилось — наверное потому, что легче выговаривать) различной производительности — от 200 до 500 л/ч газовой смеси. Просьбы помочь в изготовлении электролизёра продолжаются, и я решил написать в ваш журнал.

Устройство электролизёра

Основная часть электролизёра — корпус 1 (рис.1), футерованный внутри диэлектриком 2; в нём установлены внутренние электроды 5, отделённые один от другого резиновыми кольцами 12. По концам корпуса установлены фланцы 3 с концевыми электродами 6, герметичными токоподводами 7 и штуцерами 4. Прозрачные фланцы 3 (из оргстекла) и прорези по краям концевых электродов 6 служат для визуального контроля уровня электролита и процесса электролиза.

Электроды изготовлены из нержаве

modelist-konstruktor.com

Портативная электролизная установка » Полезные самоделки

Используя принцип получения водорода с помощью электролиза водного раствора щелочи, я решил сделать простой и компактный аппарат, удобный для работы с небольшими деталями, при пайке твердыми припоями. Благодаря малым наружным габаритам электролизера ему найдется место и на небольшом рабочем столе, а использование в качестве блока электролитания стандартного выпрямителя для подзарядки аккумуляторных батарей облегчает изготовление установки и делает работу с ней безопасной.

Относительно небольшая, но вполне достаточная производительность аппарата позволила предельно упростить конструкцию водяного затвора и гарантировать пожаро- и взрывобезопасность.

Устройство электролизера

Между двумя платами, соединенными четырьмя шпильками, размещена батарея стальных пластин-электродов, разделенных резиновыми кольцами. Внутренняя полость батареи наполовину заполнена водным раствором КОН или NaОH. Приложенное к пластинам постоянное напряжение вызывает электролиз воды и выделение газообразного водорода и кислорода.

Эта смесь отводится через надетую на штуцер полихлорвиниловую трубку в промежуточную емкость, а из нее в водяной затвор, которые сделаны из двух порожних баллончиков для заправки газовых зажигалок (можно использовать баллончики завода «Северный пресс» г. Ленинград). Газ, прошедший через помещенную там смесь воды с ацетоном в соотношении 1 : 1, имеет необходимый для горения состав и, отведенный другой трубкой в форсунку - иглу от медицинского шприца, сгорает у ее выходного отверстия с температурой около 1800°С.

Рис. 1. Водяная горелка.

Для плат электролизера я использовал толстое оргстекло, толщиной 25 мм. Этот материал легко обрабатывается, химически стоек к действию электролита и позволяет визуально контролировать его уровень, чтобы при необходимости добавлять через наливное отверстие дистиллированную воду.

Пластины можно изготовить из листового металла (нержавеющая сталь, никель, декапированное или трансформаторное железо) толщиной 0,6-0,8 мм. Для удобства сборки в пластинах выдавлены круглые углубления под резиновые кольца уплотнения, глубина их при толщине кольца 5-6 мм должна быть 2-3 мм.

Кольца, предназначенные для герметизации внутренней полости и электрической изоляции пластин, вырезаются из листовой маслобензостойкой или кислотоупорной резины. Сделать это вручную несложно, но все же идеальным будет выполненный с помощью круглореза.

Четыре стальные шпильки M8, соединяющие детали, изолированы кембриком 10 мм и пропущены в соответствующие отверстия 11 мм.

Количество пластин в батарее - 9. Оно определяется параметрами блока электропитания: его мощностью и максимальным напряжением - из расчета 2 В на пластину. Потребляемый ток зависит от количества задействованных пластин (чем их меньше, тем ток больше) и от концентрации раствора щелочи. В более концентрированном растворе ток меньше, но лучше применять 4-8%-ный раствор - при электролизе он не так пенится.

Контактные клеммы припаиваются к первой и трем последним пластинам. Стандартное зарядное устройство для автомобильных аккумуляторов ВА-2, подключенное на 8 пластин, при напряжении 17 В и токе около 5 А обеспечивает необходимую производительность горючей смеси для форсунки - иглы с внутренним 0,6 мм. Оптимальное соотношение диаметра иглы форсунки и производительности электролизера устанавливается опытным путем - так, чтобы зона воспламенения смеси располагалась вне иглы. Если производительность мала или диаметр отверстия слишком велик, горение начнется в самой игле, которая от этого быстро разогреется и оплавится.

Надежным заслоном от распространения пламени по подводящей трубке внутрь электролизера является простейший водяной затвор, который сделан из двух порожних баллончиков для заправки газовых зажигалок. Достоинства их те же, что и у материала плат: легкость механической обработки, химическая стойкость и полупрозрачность, позволяющая контролировать уровень жидкости в водяном затворе. Промежуточная емкость исключает возможность смешивания электролита и состава водяного затвора в режимах интенсивной работы или под действием разряжения, возникающего при выключении электропитания. А чтобы этого избежать наверняка, по окончании работы следует сразу же отсоединять трубку от электролизёра. Штуцеры емкостей сделаны из медных трубок 4 и 6 мм, устанавливаются в верхней стенке баллончиков на резьбе. Через них же осуществляется заливка состава водяного затвора и слив конденсата из разделительной емкости. Отличная воронка для этого получится из еще одного пустого баллончика, разрезанного. пополам и с установленной на месте клапана тонкой трубкой.

Соедините короткой полихлорвиниловой трубкой 5 мм электролизер с промежуточной емкостью, последнюю - с водяным затвором, а его выходной штуцер более длинной трубкой - с форсункой-иглой (В качестве форсунки можно использовать медицинский шприц с иглой). Внутрь рукоятки (шприца) помещается огнегасительная набивка - латунная сетка, свернутая в спираль.

Рис. 2. Устройство электролизера:1 - изолирующая полихлорвиниловая трубка 10 мм, 2 - шпилька М8 (4 шт.), 3 - гайка М8 с шайбой (4 шт.), 4 - левая плата, 5 - пробка-болт М10 с шайбой, 6 - пластина, 7 - резиновое кольцо, 8 - штуцер, 9 - шайба, 10 - полихлорвиниловая трубка 5 мм, 11 - правая плата, 12 - короткий штуцер (3 шт.), 13 - промежуточная емкость, 14 - основание, 15 - клеммы, 16 - барботажная трубка, 17 - форсунка-игла, 18 - корпус водяного затвора.Включите выпрямитель, подрегулируйте напряжением или количеством подключаемых пластин номинальный ток и подожгите выходящий из форсунки газ.

Если вам необходима большая производительность - увеличьте количество пластин и примените более мощный блок питания - с ЛАТРом и простейшим выпрямителем. Температура пламени также поддается некоторой корректировке составом водяного затвора. Когда в нем только вода, в смеси содержится много кислорода, что в некоторых случаях нежелательно. Залив в водяной затвор метиловый спирт, смесь можно обогатить и поднять температуру до 2600° С. Для снижения температуры пламени водяной затвор заполняют смесью ацетона и воды в соотношении 1 : 1. Однако в последних случаях следует не забывать пополнять и содержимое водяного затвора.

Ю. ОРЛОВ, г. Троицк, Московская обл.Опубликовано: Моделист конструктор

www.freeseller.ru

Гидролизный аппарат - Большая Энциклопедия Нефти и Газа, статья, страница 1

Гидролизный аппарат

Cтраница 1

Гидролизные аппараты работают в условиях циклически изменяющихся давлений и температур. В связи с тем что они оборудуются быстросъемными крышками, для обеспечения их безопасной эксплуатации в соответствии с Правилами по сосудам [2] гидролизные аппараты должны оснащаться устройствами, исключающими возможность включения их под давление при неполном закрытии крышки и открывания ее при наличии в сосуде давления.  [1]

Гидролизный аппарат ( рис. 1.2) представляет собой вертикальный цилиндрический сосуд с коническими верхней и нижней частями, которые заканчиваются фланцами для крепления крышки и выдувного клапана. Через верхнюю горловину производят загрузку аппарата сырьем. Она герметично закрывается быстросъемной поворотной механизированной крышкой с полукольцевыми захватами. Управление крышкой осуществляется дистанционно или автоматически; в необходимых случаях управление крышкой может быть осуществлено вручную. Нижняя горловина гидролизного аппарата предназначена для выгрузки лигнина, остающегося после варки.  [2]

Гидролизные аппараты работают в условиях циклически изменяющихся давлений и температур. В связи с тем что они оборудуются быстросъемными крышками, для обеспечения их безопасной эксплуатации в соответствии с Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, гидролизные аппараты должны оснащаться устройствами, исключающими возможность включения их под давление при неполном закрытии крышки и открывания ее при наличии в сосуде давления.  [3]

Гидролизный аппарат представляет собой сварной вертикальный цилиндрический сосуд с двумя коническими днищами вместимостью 37 м3, диаметром 2750 мм, высотой 11 000 мм, с толщиной стенки 22 мм.  [4]

Гидролизный аппарат - это вертикальный цилиндрический сосуд с коническими верхней и нижней частями ( рис. 1.2), которые заканчиваются фланцами для креп - ления крышки и выдувного клапана. Сырьем аппарат загружают через верхнюю горловину. Она герметично закрывается быстросъемной поворотной механизированной крышкой с полукольцевыми захватами. Управление крышкой осуществляется дистанционно или автоматически. В необходимых случаях управление крышкой может быть осуществлено вручную. Нижняя горловина гидролизного аппарата предназначена для выгрузки лигнина, остающегося после варки. К фланцу нижней горловины крепится быстрооткрывающийся запорный клапан, приводимый в действие пневмоци-линдром. Выгрузку лигнина, остающегося в аппарате после окончания гидролиза, производят под избыточным давлением, открывая запорный клапан в нижней части гидролизного аппарата.  [6]

Полученный в гидролизном аппарате раствор Сахаров ( гидролизат) после нейтрализации и облагораживания направляется на биохимическую переработку.  [7]

Получающийся в гидролизных аппаратах гидролизат направляется в испаритель, в котором давление падает с 11 - 12 до 0 5 - 1 от. Из холодильников ( решофе-ров) конденсат паров поступает в фурфурольную колонну для выделения фурфурола и скипидара. Остатки - фурфу-рольный лютер - сбрасываются в канализацию.  [8]

Сульфитно-варочные котлы и гидролизные аппараты представляют собой сосуды, внутренняя поверхность которых защищена кислотоупорной футеровкой, предохраняющей поверхность металла от воздействия рабочей среды. Если проводить их внутренний осмотр и гидравлическое испытание в том виде, как это делается для сосудов, не имеющих футеровки, то потребовалось бы полное удаление футеровки с последующим полным ее восстановлением. Это связано с дополнительными материальными и трудовыми затратами и длительным простоем оборудования. Правила устройства и безопасной эксплуатации сосудов, работающих под давлением, допускают не проводить гидравлическое испытание гидролизных аппаратов и сульфитно-варочных котлов с внутренней кислотоупорной футеровкой при условии контроля металлических стенок этих сосудов ультразвуковой дефектоскопией.  [9]

Внутренняя поверхность корпуса гидролизного аппарата, изготовленного из углеродистой стали, защищается от коррозии в среде слабых кислот кислотостойкой неметаллической футеровкой, выполняемой по всей поверхности. Наружная поверхность аппарата теплоизолирована.  [10]

В отношении контроля стальных сварных гидролизных аппаратов эти инструкции близки по содержанию. В РД 64 - 047 - 87 дополнительно излагается порядок контроля металла накладок опорных лап, металла и сварных соединений под ними, а также сварных соединений, выполненных с конструктивным зазором. РД 64 - 047 - 87 определяет порядок и методику контроля, устанавливает нормы оценки качества сварных соединений и металла корпуса гидролизных аппаратов, изготовленных из перлитных сталей с толщиной стенки 10 - 50 мм. Согласно этому документу, предприятие-владелец сосуда на каждый гидролизный аппарат составляет схему развертки и согласовывает ее с Иркутск-НИИхиммашем. На схеме наносят все сварные соединения, в том числе не доступные для ультразвукового контроля ( под накладными листами опорных лап, выполненные с конструктивным зазором угловые сварные соединения приварки фланцев, штуцеров и патрубков к аппарату), и участки поверхности, не доступные для контроля ( под накладными листами опорных лап), указывают номера сварных соединений и основные размеры сосуда.  [11]

Обработка производится в гидролизных аппаратах при избыточном давлении.  [12]

Подкладные листы опорных лап гидролизных аппаратов подлежат ультразвуковой дефектоскопии для определения их толщины не реже одного раза в 5 лет. Металл корпуса йод этими листами подлежит обязательному ультразвуковому контролю с внутренней стороны при удалении футеровки гидролизного аппарата для ее замены. Схему развертки разбивают на участки из такого расчета, чтобы вся поверхность аппарата была проверена за 10 лет, а через 5 лет контролировались участки, расположенные в шахматном порядке.  [13]

Гидравлическое испытание сульфитных варочных-котлов и гидролизных аппаратов с внутренней кислотоупорной футеровкой может ие проводиться при условии контроля металлических стенок этих котлов и аппаратов ультразвуковой дефектоскопией. Ультразвуковая проверка должна производиться специализированной организацией в период их капитального ремонта, но не реже одного раза в 5 лет по инструкции в объеме не менее 50 % поверхности металла корпуса и не менее 50 % длины швов с тем, чтобы 100 % - ный ультразвуковой контроль осуществлялся не реже чем через каждые 10 лет.  [14]

Внутренняя поверхность сульфитно-варочных котлов и гидролизных аппаратов покрыта кислотоупорной футеровкой, защищающей поверхность металла от воздействия рабочей среды. Проведение их внутреннего осмотра и гидравлических испытаний потребовало бы полного удаления футеровки с последующим полным ее восстановлением, что сопряжено с дополнительными материальными и трудовыми затратами и длительным простоем оборудования.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Гидролизное производство

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ЛЕСОХИМИЧЕСКИХ ПРОИЗВОДСТВ

Гидролиз древесины может осуществляться с использова­нием концентрированных или разбавленных минеральных кис­лот. При обработке древесины при 20—40 °С концентрирован­ной серной или сверхконцентрированной (41 %-ной) соляной кислотой происходит распад макромолекул полисахаридов на растворимые фрагменты и растворение последних в кислоте. Полученный раствор разбавляют водой и кипятят с целью ин­версии полисахаридов. Однако расход кислоты в этом процессе очень велик. Поэтому в промышленности для гидролиза древе­сины применяют разбавленную серную кислоту. В эт ом случае требуется нагревание до 180 °С и выше под соответствующим давлением. Однако при этом, кроме перехода сложных Сахаров в простые, происходят и побочные реакции; разложение обра­зовавшихся моносахаридов с образованием гуминовых веществ, отщепление от древесины ацетильных и метоксильных групп и др.

Технология гидролиза древесины. Технологическая схема процесса гидролиза древесины разбавленной серной кислотой показана на рис. 2.9.

Основным аппаратом гидролизного производства является гидролизаппарат (рис. 2.10). Это вертикальный цилиндриче­ский стальной сосуд сварной конструкции, верхняя и нижняя

1 — гидролизаппарат; 2— весомер; 3— конвейер сырья; 4. 5 — подогреватели; 6, 7 — Теплообменники; 8 — инвертор; 9, 10 — испарители; 11 — кислотный насос; 12—мерник кислоты; 13 — быстродействующий клапаи; 14 — циклон; 15 — конвейер лигнина

Части которого представляют собой усеченный конус. Аппарат футеруют обычно слоем бетона и поверх его кислотоупорными плитками. Вместимость аппарата от 18 до 160 м3. В верхней части аппарата имеется загрузочная горловина, закрываемая крышкой. Внутри аппарата, в нижней его части, для отделения гидролизата от лигнина установлены фильтрующие устройства, выполненные из перфорированных кислотоупорных труб (диа­метр отверстий 4 мм). К аппарату приварены две опорные лапы, которыми он опирается на несущую конструкцию. Под одну из лап подкладывают датчик весомера, а под другую — роликовый шарнир для того, чтобы обеспечить подвижность аппарата при его взвешивании.

В гидролизаппарат загружают измельченную древесину — щепу или смесь щепы с опилками и одновременно закачивают разбавленную 0,5°/о-ную серную кислоту. Затем закрывают верхнюю горловину, постепенно нагревают содержимое аппа­рата острым паром и производят сдувку для удаления воздуха и летучих продуктов. Температуру содержимого аппарата в те­чение 30—40 мин доводят до 130—150 °С, а давление до 0,7— 0,9 МПа. За это время значительная часть гемицеллюлоз гид - ролизуется и переходит в раствор. Потом начинают непрерыв­ную перколяцию, т. е. сверху непрерывно подают в гидролиз­аппарат разбавленную серную кислоту, нагретую до 170— 190 °С, а снизу непрерывно выводят из него гидролизат.

Рис. 2.10. Гидролизаппарат:

I — корпус; 2 — загрузочная горловина; 3 —- сдувоч - ный штуцер; 4 — весомер; 5 — выхлопная горлови­на; 6 — фильтрующие устройства

В процессе непрерывной перколя - ции температуру в аппарате посте­пенно доводят до 180—190 °С, давле­ние при этом составляет 0,9—1,2 МПа. В этот период гидролизуется целлю­лоза и трудногидролизуемая часть гемицеллюлоз. Макромолекулы по­лисахаридов при гидролизе древе­сины последовательно укорачива­ются. Так, из целлюлозы сначала образуется гидроцеллюлоза, затем целлодекстрины (состоящие из 10— 60 остатков глюкозы), олигосаха - риды (3—10 остатков глюкозы), цел - лобиоза (дисахарид С^НггОц) и, наконец, глюкоза. Образующиеся мо­носахариды при непрерывной перко- ляции быстрее удаляются из реак­ционного пространства и тем самым лигнаи уменьшается их разрушение.

Подачу пара, воды, кислоты и от­бор гидролизата ведут по заданной программе, составленной с учетом того факта, что по мере гидролиза происходит усадка сырья и снижается содержание полисахаридов в нем. Ход про­цесса контролируют по массе веществ, содержащихся в аппа­рате; ее определяют по показаниям весомера, на шкале кото­рого ноль соответствует пустому аппарату.

Когда в гидролизаппарат подано установленное програм­мой количество кислоты, а также воды для промывки остаю­щегося в аппарате лигнина в конце процесса, и из него выве­дено заданное количество гидролизата, процесс заканчивается. После этого снижают давление до 0,6—0,7 МПа, открывают быстродействующий клапан и лигнин за 0,5—1 мин выдувается в циклон, откуда он выгружается через отверстия в днище цик­лона с помощью вращающегося выгребного механизма.

Лигнин используют как топливо и частично перерабатывают В угли различного назначения, нитролигнин и другие продукты.

В зависимости от величины гидролизаппарата и вида сырья весь цикл от загрузки сырья до выгрузки лигнина (варка) про­должается от 2 до 5 ч.

Гидролизат от всех гидролизаппаратов поступает в общий коллектор. На некоторых заводах установлено большое число аппаратов (до 28), в этом случае их разделяют на группы, каж­дая из которых имеет свой коллектор гидролизата. Из коллек­тора гидролизат направляется на ступенчатое испарительноео Хлаждение. В испарителе высокого давления поддерживается давление на 0,4—0,5 МПа ниже, чем в гидролизаппарате, в ре­зультате чего гидролизат мгновенно вскипает, частично испаря­ется и охлаждается до 130—140 °С. Затем он поступает в испа­ритель низкого давления, где давление поддерживается около 0,2 МПа и происходит повторное вскипание и охлаждение гид­ролизата. Пары самоиспарения гидролизата содержат фурфу­рол, который выделяют и очищают до товарного продукта.

Подготовка гидролизата к биохимической переработке. Гид­ролизат содержит 3—3,5 % РВ, из них до 90 %, приходится на моносахариды, свыше 5 %1 составляют декстрины, осталь­ное— различные примеси, затрудняющие биохимическую пере­работку гидролизата.

Поэтому гидролизат сначала выдерживают в течение 3 ч при 100 °С в инверторах с целью инверсии декстринов, а также для разрушения части примесей. Затем его нейтрализуют из­вестковым молоком и аммиаком до рН 3,2—4,2, одновременно добавляют минеральные питательные соли. Нейтрализованный гидролизат (нейтрализат) подвергают отстаиванию для отделе­ния взвешенных частиц и охлаждают до 30—35 °С. Полученное сусло (субстрат) аэрируют и затем освобождают от обра­зовавшихся хлопьев путем отстаивания. Для снижения концент­рации фурфурола и других веществ, тормозящих жизнедеятель­ность дрожжей, сусло обычно разбавляют водой примерно на­половину, часть воды может быть заменена последрожжевой бражкой.

На некоторых заводах нейтрализованный и очищенный гид­ролизат упаривают, получая кормовой гидролизный сахар. Он выпускается в качестве готового продукта в виде раствора, со­держащего 20—25 % легкоусвояемых углеводов.

Биохимическая переработка сусла. Этот процесс ведется так же, как и процесс по переработке сульфитных щелоков. При этом сусло из хвойной древесины, в котором из всех моносаха­ридов 75—77 % приходится на гексозы, обычно сбраживают для получения этилового спирта; его концентрация в бражке около 1,5 %, а выход товарного спирта 160—180 л из 1 т абсолютно сухого сырья. Остаток после отгонки спирта — гидролизную барду используют для выращивания дрожжей, выход которых около 30 кг из 1 т абсолютно сухого сырья. Гидролизат из лист­венной древесины содержит гексоз меньше, и его используют целиком для выращивания дрожжей, выход которых возрас­тает до 200—210 кг.

Двухфазный гидролиз. При двухфазном гидролизе листвен­ной древесины и растительных отходов сельского хозяйства (подсолнечной лузги, кукурузной кочерыжки и др.) сначала в мягких условиях гидролизуют только гемицеллюлозы, преиму­щественно пентозаны (пентозный гидролиз), а затем после от­деления пентозного гидролизата повышают температуру и дав­ление и гидролизуют целлюлозу (гексозный гидролиз). Пентоз - ный гидролизат очищают и подвергают гидрированию, причем ксилоза превращается в многоатомный спирт ксилит, рекомен­дуемый больным диабетом вместо сахара. На гексозном гидро- лизате выращивают дрожжи.

На некоторых заводах при проведении двухфазного гидро­лиза сырье смешивают с 10—15 %-ной серной кислотой при гидромодуле 0,2-^0,3:1, загружают в гидролизаппарат, нагре­вают острым паром до 160—180 °С и продолжают подачу пара в течение 2—3 ч. В это время происходит гидролиз пентозанов до пентоз, дегидратация пентоз до фурфурола и выведение фурфурола с паром в конденсационную систему. Как показали производственные опыты, серную кислоту целесообразно заме­нять солевыми катализаторами (суперфосфатом, монокальций - фосфатом и др.). Конденсат, содержащий около 3% фурфу - рола, очищают от примесей и ректифицируют, получая товар­ный фурфурол. Остающийся в гидролизаппарате целлолигнин подвергают перколяционному гидролизу 0,7—1 %-ной серной кислотой и используют получаемый гексозный гидролизат для выращивания дрожжей.

Фурфурол получают также из древесной щепы лиственных пород путем обработки водяным паром при 180 °С под давле­нием в вертикальном непрерывнодействующем аппарате. Гидро­лиз пентозанов происходит в результате каталитического воз­действия отщепляющихся от древесины органических кислот. Целлолигнин после отгонки фурфурола брикетируют. Хвойную древесину для производства фурфурола не используют из-за малого содержания в ней пентозанов.

Новые гидролизные заводы строятся преимущественно как специализированные фурфурольно-дрожжевые предприятия.

Разрабатывается комплексный способ переработки расти­тельного сырья, по которому перколяционный гидролиз сырья производится только до температуры 150 °С. Получаемый ге - мицеллюлозный гидролизат отжимается и используется для вы­ращивания кормовых дрожжей. Оставшийся в гидролизаппа­рате целлолигнин с целью обогащения его сахарами заливают 0,5 %-ной кислотой и нагревают 15—30 мин при 170—180 °С, затем выгружают и нейтрализуют газообразным аммиаком. По­лучается растительно-углеводный корм, обладающий высокими кормовыми свойствами. Из 1 т абсолютно сухой древесины можно получить до 120 кг товарных дрожжей и 700 кг расти­тельно-углеводного корма; отходов в виде лигнина нет.

Полностью используется сырье и при получении кормовой осахаренной древесины. Например, древесную щепу подвергают частичному гидролизу, для чего смачивают раствором серной кислоты с таким расчетом, чтобы концентрация кислоты вну­три древесины составила с учетом содержащейся в древесине влаги около 0,1 %• Затем щепу пропаривают, размалывают в ди­сковой мельнице и нейтрализуют аммиаком. При частичном гидролизе происходит деструкция трудногидролизуемых поли­сахаридов древесины, в результате чего в готовом продукте содержится значительное количество редуцирующих веществ. Кормовая осахаренная древесина применима в качестве угле­водной добавки в рационах кормления крупного рогатого скота.

Отходящие газы от различных аппаратов лесохимических производств содержат значительное количество паров летучих веществ и подлежат очистке с целью предотвращения попада­ния их в атмосферу и регенерации некоторых из них. Газовые выбросы …

Количество промышленных стоков и степень их загрязнен­ности зависят от принятой схемы технологических процессов и на различных заводах колеблются в весьма широких пределах. В частности, при экстракции уксусной кислоты из жижки …

В процессах производства лесохимических продуктов обра­зуются различные сточные воды — отбросные воды ректифика­ционных аппаратов, промывные, подсмольные и подскипидар - ные воды и др. Все они объединяются общим названием про­мышленных стоков …

msd.com.ua