Виды солнечных панелей. Виды комплектующих и их свойства. Характеристики солнечных панелей


Солнечные элементы. Виды и работа. Применение и особенности

Фотогальванические полупроводниковые фотоэлементы преобразуют энергию электромагнитного излучения в электрическую. По принципу действия они являются фотодиодами, не требующими приложения внешнего напряжения, и создающими электродвижущую силу самостоятельно.

Первые такие элементы были разработаны в 1926 году, в качестве полупроводникового материала использовалась закись меди. Далее были разработаны селеновые фотоэлементы. В 1958 году в США и СССР были запущены спутники с использованием солнечных батарей.

В настоящее время используются в основном кремниевые фотоэлементы, преобразующие энергию солнечных лучей, и называются подобные ячейки обычно солнечными элементами. Полупроводниковый кремний широко распространен на земле в виде диоксида кремния (обычного песка, или кремнезема).

Путем последовательного и параллельного соединения элементов создаются солнечные батареи мощностью до нескольких киловатт.

Виды солнечных элементов

Кремниевые солнечные элементы выпускаются 4 видов:

  • поликристаллические;
  • монокристаллические;
  • тонкопленочные;
  • гибридные.

Все эти виды солнечных элементов производятся по разным технологиям.

Производство солнечных элементов

Для производства поликристаллических элементов прежде всего, путем медленного охлаждения расплава кремния, выращиваются призматические заготовки квадратного сечения, разрезаемые далее на тонкие квадратные пластинки. Поверхность ячеек темного (черного) оттенка с неоднородной структурой.

Неоднородность вызывается тем, что заготовка не представляет собой единого кристалла, а состоит из большого количества кристалликов случайной ориентации.

Выращивание поликристаллов требует меньших затрат, чем производство монокристаллов, что удешевляет поликристаллические солнечные элементы в сравнении с другими типами.

Монокристаллические солнечные элементы производятся из монокристаллов кремния высокой чистоты с не более чем 0,01% примесей, и они отличаются более высокой стоимостью и эксплуатационными характеристиками, чем поликристаллические элементы.

Монокристаллы кремния выращиваются при температуре 1300 °С в виде призмы с поперечным сечением в виде многоугольника, соответственно ячейки этого типа имеют форму квадрата со скошенными углами, либо многоугольника. Монокристалличность заготовки определяет однородный характер поверхности элементов. Самый верхний слой ячейки выполнен из антиотражающего материала, придающего элементу яркий синий цвет.

Тонкопленочные солнечные элементы называют также «гибкими панелями». Производятся подобные ячейки напылением в вакууме при температуре 300 °С полупроводникового аморфного кремния на тонкую гибкую подложку из стекла, пластика или металла. Кристаллы кремния при этом осаждаются на подложке неравномерно и направлены своими осями в разные стороны случайным образом.

Как альтернатива, взамен кремния напыляются теллурид кадмия или селенид меди-индия. Слой полупроводникового материала покрывается сверху защитной пленкой. Технологии производства подобных элементов непрерывно совершенствуются. Тонкопленочные солнечные элементы отличаются минимальной толщиной (около 1 мкм) и малыми затратами на изготовление.

При производстве гибридных солнечных элементов над кристаллическим полупроводниковым материалом располагается тонкий слой аморфного полупроводника.

Принцип действия солнечных элементов

В основе работы фотоэлементов лежит давно открытое явление фотоэффекта – испускания веществом электронов под действием света или любого другого электромагнитного изучения.

Солнечный элемент представляет собой p-n переход, это по сути два соприкасающихся полупроводника разной проводимости с разделяющим слоем между ними. В p-полупроводнике электронов недостаток, а в n-полупроводнике напротив, избыток. В сторону источника излучения направлен n-полупроводник (внешний электрод), он располагается на подложке поверх p-полупроводника (внутреннего электрода). При попадании на элемент солнечных лучей электроны n-полупроводника выбиваются с атомных орбит и переходят в лежащий ниже p-полупроводник. Образуется направленный поток электронов, который можно замкнуть на внешнюю нагрузку с протеканием в ней непрерывного электрического тока.

Такой элемент является некоторым аналогом батареи с катодом (отводом от n-полупроводника) и анодом (отводом от p-полупроводника). Отрицательным полюсом этой «батареи» является внешний электрод (сетка поверх n-полупроводника), а положительным – внутренний (подложка с нанесенным p-полупроводником).

Солнечные элементы как источники питания

Освещенный светом солнечный элемент создает на своих выводах некоторую электродвижущую силу (ЭДС), значение которой зависит от интенсивности падающего на ячейку света. С увеличением освещенности ЭДС возрастает, но лишь до определенного предела (для кремниевых элементов до 0,6 В), т.е. зависимость ЭДС от освещенности нелинейная. От размеров элементов ЭДС не зависит, но она снижается примерно на 2 мВ при нагреве элемента на 1 С.

Для получения более высокой ЭДС устройства соединяют последовательно. Отдаваемый элементом ток зависит от вида элемента и падающего светового потока, в свою очередь определяемого освещенностью и площадью ячейки. Элемент с коэффициентом полезного действия (КПД) 17% размером 156 х 156 мм выдает при коротком замыкании ток 9 А. Максимальную мощность элемент выдает при просадке напряжения под нагрузкой до 0,47-0,5 В, такой режим работы элемента наиболее оптимален. Поскольку площадь ячейки ограничивается технологией изготовления (ячейка – поперечный срез кристалла ограниченных размеров), для повышения отдаваемой мощности отдельные элементы соединяют также и параллельно.

При подключении к элементу или батарее нагрузки напряжение падает, а поскольку оно зависит и от высоты солнца, состояния неба и атмосферы (в пасмурную погоду мощность световых панелей падает в 15-20 раз), солнечные электростанции снабжаются автоматическими регуляторами и буферными аккумуляторами, сглаживающими пики потребления электроэнергии и изменения интенсивности падающего светового потока.

Особенности солнечных элементов разных видов

Солнечным элементам свойственны как общие свойства, так и отличные в зависимости от их вида и технологии изготовления.

Поликристаллические элементы

Поскольку в элементах этого типа кристаллики кремния ориентированы случайно, их эффективность снижается при прямом падении солнечного света, но, в порядке некоторой компенсации, снижается незначительно при наклонном падении света. Их характеристики незначительно зависят от угловой высоты солнца и его положения на небосводе. КПД таких элементов невысок и составляет 17-20%.

Монокристаллические элементы

КПД монокристаллических элементов выше КПД поликристаллических элементов и доходит до 25%, и даже до 44% в элементах, предназначенных для космической отрасли. Эти элементы более критичны к углу падения солнечных лучей, и их целесообразно ориентировать на Солнце с изменением положения в течение дня. Хорошо работают они и при высокой облачности, а также при отрицательных температурах.

Аморфные элементы

КПД элементов из кремния низок (около 7-10%), для элементов из современных материалов он достигает 15-20%. К достоинствам этих элементов относится возможность монтажа их на изогнутых конструкциях, они хорошо работают при рассеянном освещении. К недостатку можно отнести большие размеры – вследствие низкого КПД они требуют при равенстве мощности вдвое большей установочной площади в сравнении с кристаллическими элементами. Также со временем слой аморфного кремния постепенно деградирует, и батарея теряет эффективность, примерно на 20% мощности за первые 2 года эксплуатации.

Гибридные элементы

Поскольку кристаллический кремний и аморфный кремний наиболее эффективно работают каждый в своей области солнечного спектра, при освещении солнечным светом смешанного состава общий КПД солнечного элемента повышается.

Применение солнечных элементов

Поскольку ЭДС одного элемента составляет 0,6 В, для получения достаточного напряжения их соединяют последовательно. Батарея из соединенных последовательно 36 элементов будет обладать ЭДС 0,6 х 36 = 21,6 В, а при оптимальной нагрузке будет выдавать напряжение порядка 17-18 В. Чтобы заряжать таким напряжением аккумулятор с номинальным напряжением 12 В, необходим контроллер заряда, избавляющий аккумулятор от перезаряда, а батарею от перегрузки. Подобный контроллер позволяет путем автоматического снижения напряжения увеличивать снимаемый ток, а тем самым постоянно поддерживать элементы в режиме съема максимальной в данных условиях мощности.

Изначально предполагалось, что устройства будут применяться в основном в космической промышленности и в военных целях. Солнечные батареи – основные источники питания на космических аппаратах, особо эффективны такие устройства при полетах от Земли в сторону Солнца, где мощность батарей значительно возрастает. Очень выгодно использование солнечных элементов для питания автоматических метеостанций.

В тропических и субтропических регионах с большим количеством часов солнечного сияния в году солнечные батареи позволяют решить проблемы энергоснабжения жилых домов и дач, при этом батареи размещают на крышах. В городах батареи на солнечных элементах используются для подзарядки автомобилей, а также для уличного освещения (накопленная в светлое время суток энергия расходуется в темное). Сфера применения солнечных элементов и батарей непрерывно расширяется по мере их удешевления и совершенствования характеристик.

Похожие темы:

 

electrosam.ru

Солнечные батареи для дома: виды, устройство, технические характеристики

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Электрические солнечные батареи для дома открывают много возможностей

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт  а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью.  Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на  корпусе.

Солнечная панель для дома состоит из некоторого количества фтоэлементов

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;

Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Солнечные электростанции для дома могут быть не такими дорогими, если подходить к вопросу взвешенно

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:

Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.

Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Солнечная панель на 4 В имеет 7 элемента

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Пример технических характеристик солнечных батарей для дома

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и  т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Бликов на корпусе быть не должно

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно тут).

Солнечные батареи для дома: электрическое подключение

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

openfile.ru

Виды солнечных панелей. Виды комплектующих и их свойства

Зачем нужны солнечные батареи?

Автономность дома от внешних источников энергии – это мечта технологически подкованного человека, который понимает важность применения экологически чистого энергоносителя. В условиях удорожания электричества в мире, где потребление энергии растет с каждым годом и не замедлит своего роста, традиционные источники, которые причиняют большой вред окружающей среде и влияют на наше с вами здоровье, солнечные батареи являются самым простым и выгодным вариантом. Этот вид энергии имеет неисчерпаемый ресурс солнца, который легко улавливать и грамотно собранная система будет работать круглый год с переменной эффективностью в зависимости от сезона и солнечных дней в году. Технологическое производство солнечных панелей освоено и выпускает продукцию на массовый рынок, поэтому цены на оборудование падают стремительными темпами в условиях современной конкуренции. Система солнечных батарей состоит из непосредственно панелей, улавливающих свет, зарядного контролера, который следит за поступающей и уходящей энергией и не дает аккумуляторам полностью разрядиться или перезарядиться, собственно аккумулятора и инвертора, преобразующего ток постоянный в переменный.

Виды солнечных панелей

  • Тонкопленочные солнечные панели – состоят из кремниевой пленки и имеют самую выгодную цену, но обладают рядом недостатков – занимают большую площадь и имеют коэффициент полезного действия ниже, чем у других вариантов. Но за доступность пользуются хорошим спросом.
  • Монокристаллические солнечные панели – качественные кремневые пластины, имеющие хорошую отдачу и небольшие размеры, что, несомненно, делает их лучшим вариантом для дома. Единственный недостаток являет собой высокую стоимость, но если хотите хорошую мощность и энергетическую отдачу, то выбора за этим вариантом.
  • Поликристаллические солнечные панели — являются самыми популярными из всех видов, за оптимальное соотношение цены, получаемой мощности и количества энергии. По параметрам они почти достигают монокристаллические, но стоят дешевле.

Выбор контролирующего устройства

Данное устройство защищает аккумуляторы от перезарядки, что очень пагубно для них. Дабы избежать скорого выхода из строя аккумулирующих устройств, нужно тщательно следить за всеми показателями. Два важных фактора определяющих цену на контроллер – это напряжение и максимальная сила тока. Напряжение бывает 12 и 24 вольт, а ток начинается от 1 ампера. При выборе устройства нужно знать характеристики солнечных панелей для грамотной настройки системы. Если суммарная отдача фотоэлементов 3,5 ампера, то подойдет вариант с 12 вольт и силой тока 5 ампер. Лучше иметь запас, так как со временем может понадобиться увеличение площади солнечных панелей. Дополнительные опции в виде защиты от перегрузок и короткого замыкания являются важными.

Выбор аккумуляторного устройства

Чем больше емкость, тем дольше будут работать электробытовые устройства и освещение. К примеру, аккумулятор с 12 вольт и 50 ампер при использовании обычной лампочки на 12 ватт и 1 ампер разрядиться через 50 часов. Современный широкий выбор устройств этого типа позволит купить оптимальный вариант для ваших потребностей. Возможно использование простого автомобильного аккумулятора, но эффективность его не высокая, поэтому придется осуществлять систему из нескольких подобных, что принесет некоторые сложности.

Выбор инвертора

Важная вещь всей системы солнечных батарей, так как современные устройства, типа телевизоров, ноутбуков и прочей домашней техники работают на переменном токе, поэтому преобразователь крайне нужен.

Преимущества установки солнечных панелей

  • доступность в любом месте нашей планеты, безграничный ресурс солнца, делает энергию совершенно бесплатной, только затраты на оборудование и эксплуатацию;
  • автономность устройства и полная или частичная независимость от основного поставщика электроэнергии, а в условиях удорожания энергоносителей это актуальный вопрос, ответ на который являет собой солнечные батареи;
  • экологическая чистота данного вида энергии без сомнений не может радовать, так как загрязнение окружающей среды начинает достигать угрожающих масштабов и решение этой проблемы лежит во внедрении альтернативных источников;
  • в свете последних технологических прорывов во многих областях промышленности значительное удешевление систем солнечных панелей является фактором времени. Уже сейчас доступность оборудования для генерации этого вида электроэнергии вполне приемлема для гражданина со средним годовым доходом;
  • конкурентная способность солнечного электричества достигает точки, когда традиционные виды энергетики не будут являться основным источником электропитания. Для создания системы из фотоэлементов не требует специальных разрешений или регистраций и если вы задумали сделать свой дом полностью автономным, то помешать никто не сможет.

Зачем солнечные батареи дома?

Это отличный способ обеспечить себя бесплатной энергией и значительно сократить расходы на освещение, питание электрических бытовых приборов, также применять этот источник для подогрева воды, что весьма актуально для труднодоступных и удаленных от центральных энергомагистралей. В перспективе одного-двух лет покупка оборудования для улавливания света и преобразования его в электричество при среднем годовом доходе окупаемость будет стопроцентной.

Отрицательные моменты солнечных батарей

Ради справедливости стоит упомянуть о таких моментах, как регулярная чистка поверхности фотоэлементов, чтобы производительность не упала. Также следует учитывать температуру окружающей среды, которая тоже влияет на эффективность, например при слишком жаркой погоде некоторые панели снижают свою производительность. Время использования также приводит к снижению мощности. И главный минус это пока довольно высокая стоимость солнечных панелей. Но замечу, что все спорные моменты уйдут в течение ближайшего времени, так как развитие технологий не стоит на месте и чем эффективней будет система, тем больше спрос на нее.

gooosha.ru

Выбираем вместе солнечные батареи их виды и особенности применения

Солнечные батареи стали широко известны благодаря возможности снизить негативное воздействие добываемого топлива на окружающую среду, если заменить его возобновляемыми источниками энергии. Но помимо практически полной экологичности такие устройства позволяют еще и заметно экономить на природных ресурсах, а также отличаются достаточным уровнем эффективности.

Подробно о назначении

Солнечные батареи хороши тем, что могут использоваться для обеспечения электроэнергией объектов разного целевого использования. Это может быть и промышленная или сельскохозяйственная сфера, и частное жилье, и возможность работать в «полевых условиях» (для питания техники в походах). В каждом из вариантов используются солнечные батареи переносные или стационарные, с разной площадью рабочих элементов.

Смотрим видео о применении солнечной энергии:

Для достижения наивысшей степени эффективности следует подбирать устройства с достаточной площадью батарей, чтобы появилась возможность обслуживать крупные объекты. Для этого в первую очередь требуется довольно большая территория, чтобы установить мощные солнечные батареи. Учитывая, что такие устройства представляют собой автономные источник энергии, не зависящие от внешних факторов (кроме погодных условий), то область их применения почти безгранична.

Виды и достоинства каждого из них

Основа функционирования таких аппаратов, как солнечные батареи, заключается в их способности трансформировать естественное излучение в электроэнергию. Результатом действия альтернативных источников данного рода является постоянный ток, который продуцируется по мере воздействия солнечного излучения на поверхность кремниевых пластин, в результате чего происходит сдвиг электронов кремния с атомных орбит.

Смотрим видео, критерии выбора батареи что лучше, сделать самому или купить:

Солнечные разнотипные батареи обычно содержат ряд дополнительных узлов, которые в совокупности обеспечивают полноценное функционирование таких устройств: стабилизатор напряжения; инвертор, преобразующий постоянный ток в переменный эквивалент; специальный узел, контролирующий заряд аккумулятора; и, непосредственно, сам аккумулятор, благодаря которому солнечные тепловые батареи могут работать в темное время суток.

По роду материала и технологии изготовления различают следующие разновидности:

  1. Кремниевые панели – наиболее распространенный вариант среди аналогов благодаря крупным залежам в земной коре. Уровень производительности таких устройств является наивысшим среди прочих (КПД может достигать 22%). Однако солнечные тепловые панели в этом варианте одни из самых дорогостоящих. В данной группе встречаются следующие исполнения: монокристаллические, поликристаллические, аморфные.

Последние из названных могут относиться как к кремниевым, так и к пленочным устройствам, что обусловлено особенностями производства. Так, солнечные аморфные батареи изготавливаются из несколько иного рода материала, нежели моно- и поликристаллические модели.

Виды батарей

Виды солнечных панелей

При их производстве должен применяться чистый кристаллический кремний, тогда как солнечные аморфные батареи изготавливаются из кремневодорода. Этот материал наносится тонким слоем на специальную подложку.

  1. Пленочные исполнения – обладают заметно более низким уровнем КПД (в пределах 5-14% в зависимости от модели). В качестве основного материала при изготовлении фотоэлементов в данном случае может применяться теллурид кадмия, селенид меди-индий (последний из соображений экономии часто замещают гелием) или полимеры.

Вторая группа устройств отличается более доступной ценой, однако, их степень эффективности оставляет желать лучшего. Тем пользователям, кто стремится приобрести эконом-вариант, следует иметь ввиду, что для обеспечения электроэнергией довольно крупных объектов желательно прибрести мощные солнечные батареи. А ведь известно, что на данный параметр в первую очередь влияет площадь фотоэлементов.

Поэтому в некоторых случаях намного выгоднее купить более дорогостоящие, но при этом и более эффективные монокристаллические солнечные батареи.

Отечественные марки

Несмотря на широкую популярность альтернативных источников энергии за рубежом, в России такие устройства тоже встречаются все чаще, хоть и не насколько часто, как в европейских странах. Однако сегодня функционирует несколько заводов на территории России, которые занимаются производством источников энергии на основе естественного излучения. Например, завод в Зеленограде не только производит фотоэлементы, но еще и разрабатывает и выпускает оборудование для их изготовления.

Смотрим видео, производство панелей в городе Рязань:

Если в качестве источника энергии будет выступать солнечная тепловая батарея, ее цена может сильно варьироваться, так как в первую очередь на стоимость влияет площадь фотоэлементов: чем больше по значению данный параметр, тем больше итоговая мощность, тем, соответственно, дороже будет стоить устройство.

Продукция компании Телеком-СТВ

Гибкие модули Телеком-СТВ

Однако даже наиболее дорогостоящие – монокристаллические солнечные кремниевые батареи зарубежных марок порой стоят дешевле, чем отечественная продукция. Это, опять же, объясняется тем, что такие устройства не пользуются столь же широкой популярностью здесь, как за рубежом.

Сравнивая, сколько стоит солнечная отечественная батарея и ее иностранный аналог, следует все же опираться на технические характеристики. Например, российская модель ТСМ обладает производительностью около 20%, что является хорошим показателем для техники данного рода. Если планируется приобретать солнечные батареи, то популярные производители в России – это заводы «Телеком-СТВ» и РЗМКП.

Особенности расчета и монтажа

Фотоэлектрические элементы подбираются, исходя из того, какой уровень нагрузки планируется подавать на эти устройства. Поэтому первым делом пользователю следует определить (при помощи паспорта бытового прибора) суточное энергопотребление всей техники, которая будет питаться от альтернативного источника энергии. Солнечные тепловые батареи портативные обычно используются в загородных или походных условиях, когда отсутствует возможность подключения мелкой техники. Поэтому с их выбором несколько проще справиться.

Смотрим видео, правильный расчет мощности потребления:

Установка таких устройств тоже подразумевает выполнение подготовительной работы. В первую очередь нужно соотнести размеры рабочих панелей с площадью имеющегося в распоряжении пользователя свободного участка. Необходимо спланировать возможность обслуживания такой техники (регулярная очистка от пыли, загрязнений и снега), так как все эти факторы сильно влияют на эффективность работы фотоэлементов. Если рядом есть слишком высокие деревья, об этом также следует позаботиться, так как солнечные панели в тени малоэффективны.

И, наконец, наиболее важный нюанс – угон наклона рабочих поверхностей устройства, чтобы обеспечить прямое попадание лучей на фотоэлементы.

Как видно, порой не так просто выполнить все условия, при которых должны функционировать такие устройства, поэтому часто лучшим выходом является возможность пригласить для их установки мастеров. Учитывая, сколько стоит солнечная батарея, желательно в результате получить максимальный уровень ее производительности, что невозможно обеспечить при затененности участка, где располагается подобная техника, или при постоянно загрязненной поверхности панелей фотоэлементов.

generatorvolt.ru

Вольт-амперная характеристика солнечных батарей

Основные характеристики солнечных панелей. Вольт-амперная характеристика (ВАХ)

Солнечные электростанции все больше входят в повседневную жизнь многих людей, принцип их работы в прямом получении электроэнергии из энергии солнечных лучей. С каждым днем растет количество функционирующих панелей и суммарная мощность, которая вырабатывается на Земле благодаря солнцу. К примеру, если взять десятилетие от 2004 года до 2014, то процент выработки энергии благодаря солнцу увеличился почти в 80 раз. Чтобы производить солнечные установки, используется много кремния, который выполняет роль полупроводника и производит ток во время падения на него солнечных лучей. Чтобы коэффициент полезного действия был самым высоким, используют монокристаллический чистый кремний. Особенно тщательно во время сборки панели относятся к тому, насколько качественно выполнена каждая ячейка системы, и нет разницы, какая мощность требуется от батареи – качество все равно должны быть высоким у каждого отдельно взятого элемента. Важным параметром является размер каждой ячейки, и, несмотря на то, что в разных панелях могут быть разные размеры, в каждой отдельно взятой батарее типоразмер каждой ячейки должен быть идентичным остальным. Такие жесткие требования обусловлены тем, что чем выше качество каждого мелкого элемента – тем выше качество установки в целом и выше ее выходная мощность.

Вольт-амперная характеристика солнечной панели – это один из самых важных параметров, который напрямую связан с эффективностью и рассматривается в первую очередь при оценке установки. Учитывая, что мощность установки – это сумма мощностей каждой ячейки, то все упрощается до оценки каждой используемой ячейки.

Если говорить в целом, то вольт-амперная характеристика показывает, как меняется ток, который проходит по цепи от напряжения, которое к ней прилагают. Для солнечных электростанций выработаны и стандартизированы нормальные показатели вольт-амперной характеристики, которые учитываются при проектировании моделей в любой стране. Чтобы измерить ВАХ панели, ее размещают на широте в 45о, устанавливают температуру равную 25 оС, а на каждый квадратный метр батареи должна попадать мощность падающих лучшей в 1000 ватт.

На графике слева показаны самые важные точки, которые характеризуют полупроводниковый преобразователь с точки зрения зависимости силы тока от напряжения. Также нарисована кривая, по ней можно оценить мощность фотоэлектрического компонента. За рабочее напряжения (Up) принимают напряжение, при котором мощность системы максимальна, рабочий ток (Ap) – это ток, который течет при рабочем напряжении.

Учитывая, что когда ток равен нулю, то ему же будет равна и мощность, то очевидно, что в этой отметке система не будет в рабочем состоянии, оно наступит лишь когда действительный ток и напряжение будут примерно на уровне с заданными рабочими цифрами. Батарея обычно берет нужную мощность из большего количества ячеек, чем это прописано в теории. Дело в том, что существенная часть напряжения уходит на компенсацию падения рабочего напряжения из-за того, что установка может перегреваться по причине солнечного влияния.

С каждым повышенным градусом от нормального, уменьшается напряжение холостого хода на 0,4% у ячеек, при таком же увеличении

температуры сила тока короткого замыкания (максимального) повышается на 0,07%.

Значение холостого хода никак не зависит от уровня освещенности, в отличие от значения короткого замыкания, которое будет расти или падать пропорционально перемене в освещенности элемента. Для того чтобы рассчитать насколько эффективна ячейка, ее наивысшую мощность делят на общую мощность солнечного излучения.

Элементы связываются в общую в последовательную или параллельную электрическую цепь. Благодаря работе этой общей сети и получается солнечная панель. Но не стоит высчитывать мощность устройства как сумму мощностей ячеек, так как во время работы идет потеря мощностей, показатель на практике будет ниже теоритического.

Выше уже было написано, что в одну панель помещают ячейки, характеристики которых равны относительно друг друга. В числе этих характеристик находятся описанные выше вольт-амперная характеристика и размер. Показатели всего фотоэлектрического модуля будут очень зависеть от схожести показателей каждого элемента, чем больше разброс между ними, тем хуже в использовании вся система.

Благодаря многочисленным исследованиям, выяснено, что если разброс в характеристиках у десяти соединенных в одну цепь ячеек на уровне 10%, то вся система потеряет в мощности 6%. Если же создать такую же цепь из 10 элементов, но разница в показателях между ними не выше 5%, то уровень потери мощности упадет до 2%.

Солнечная панель в идеале должна освещаться одинаково по всей площади, так как в противном случае, при последовательном соединении цепи, ячейки, располагающиеся в затемненных областях, начнут рассеивать ту мощность, которую вырабатывают нормально работающие элементы. Несмотря на затемнение, уровень нагрева ячеек будет выше обычного и они быстрее выйдут из строя, что серьезно перегрузит исправные элементы и приведет в негодность всю панель. Для того чтобы такие проблемы минимизировать используют байпасный диод, который устанавливается параллельно ячейкам.

На первом графике есть точка МРР, которая указывает на максимальную мощность и является определяющей для уровня мощности всех солнечных батарей.

Современные технологии изготовления ячеек для солнечных панелей продвинулись очень далеко, каждый шаг изготовления сопутствуется проверкой чутко откалиброванными устройствами, цель которых заметно улучшить качество готовой продукции. Похожая система контроля существует и для остальных элементов сложной системы. Только при выполнении всех строгих норм, готовая солнечная батарея будет выдавать ту мощность, которая была задумана инженерами при разработке.

Наша компания давно устанавливает солнечные панели на частные строения, в том числе дачи и коттеджи. Солнечные батареи, которые мы предлагаем своим клиентам, являются одними из лучших на украинском рынке и будут радовать владельцев высоким коэффициентом полезного действия на протяжении долгих лет работы.

solar.kiev.ua

Что необходимо знать для выбора солнечных панелей? - Help for engineer

Что необходимо знать для выбора солнечных панелей?

Наиболее распространены в продаже два вида солнечных модулей: poly и mono-кристаллические. Они отличаются друг от друга технологией изготовления, то есть, какой кремний был применен. У моно батарей КПД 15-17%, что в среднем на 3% выше чем у вторых. Но, естественно, и цена возрастает. Выбор остается за Вами, а сейчас обратим больше внимания на технические характеристики.

Для примера возьмем солнечную панель серийного производства Solar Module c-Si M 60 255 Вт ведущего немецкого производителя BOSCH.

Стоит заметить, что все параметры приведены для нормальных условий работы панели: - температура солнечной панели +25°С; - солнечная инсоляция 1000 Вт/м2.

Начнем с параметров, которые в дальнейшем повлияют на выбор сопутствующего оборудования:

- номинальная мощность Pnom=255 Вт

Это не значит, что панель будет выдавать постоянно 255 Вт мощности. 255 Вт её мощность при нормальных условиях, которые описаны выше.

- напряжение холостого хода Uoc=38,00 В

Напряжение на выходах панели при работе без подключения нагрузки.

- ток короткого замыкания Isc=8,92 A

В случае пробоя проводника на землю или же замыкания выводов панели без нагрузки возникнет ток такой величины.

- номинальное напряжение Umpp=30,51 В - номинальный ток Impp=8,36 A

Номинальные параметры имеют место при работе под нагрузкой, где mpp расшифровуется как "maximum power point" - "точка максимальной мощности".

Температурные коэффициенты:

- по току TK(Isc)=+0,031%/°С

При повышении температуры выше +25°С, каждый градус ток к.з. будет возрастать на 0,031%.

- по напряжению TK(Uoc)=-0,31%/°С

При понижении температуры ниже +25°С, каждый градус напряжение холостого хода будет возрастать на 0,31%.

- по мощности TK(P)=-0,44 %/°С

Изменение выходной мощности в зависимости от температуры панели.

*Расчет производится по формулам, которые приведены далее в статье.

При выборе солнечной панели необходимо обратить внимание на максимально возможные значения тока и напряжения. Они зависят от солнечной инсоляции и температуры температуры самой батареи. Как говорилось ранее, все параметры приведены для солнечной активности 1000 Вт/м2. Возможно, в Вашем регионе излучение может достигать больших значений, тогда необходимо учесть пропорциональный коэффициент kins.

Температурный коэффициент на ток дает небольшое влияние. Максимально допустимая температура панели +85°С, а параметр тока к.з. в паспорте приведен для +25°С, тогда

То есть, максимально возможный ток к.з. равен:

Температурный коэффициент на напряжение оказывает огромное влияние и не учитывать этот фактор просто недопустимо. Минимально возможная температура эксплуатации солнечной панели -40°С.

Тогда, максимальное напряжение на выводах:

Данный фотомодуль изготовлен на максимальное рабочее напряжение - 600 В DC, в то время как большинство подобных изделий рассчитаны на 1000 В DC.

Все остальные параметры солнечного модуля не имеют особой важности при выборе сопутствующего оборудования и носят лишь конструктивный и эксплуатационный характер:

- коннекторы - MC4; - класс защиты IP65 - пыленепроницаемость, допускается попадание струй воды под любым углом; - габаритные размеры (ВхШхГ) - 1660х990х50 мм; - вес - 21 кг; - максимальная механическая нагрузка - 2400 Па; - рабочий температурный диапазон: -40 ÷ +85°С.

Добавить комментарий

h4e.ru