Применение водорода в промышленности. Как в промышленности получают водород


применение и использование в промышленности

Водород является востребованным компонентом для большого количества производственных процессов, относящимся к промышленности. Чтобы его использовать для решения технических задач количество примесей в составе вещества не должно превышать 0, 05%, относится к марке, А и 0,01% — марка Б.

Популярность и востребованность химического элемента связана напрямую с его положительными особенностями:

  • универсальность;
  • высокая химическая активность;
  • малый вес;
  • хорошая теплопроводность;<.li>
  • большое количество тепла, образовывающееся в процессе горения;
  • безопасность использования.

Востребованность водорода для промышленных целей

Водород требуется для получения аммиака, выступающим неотъемлемым компонентом для добычи удобрений азотного типа, производства пластмассы, волокон из синтетических материалов и лекарств. Сочетание его с хлором дает возможность получить хлороводород и соляную кислоту. Также благодаря нему изготавливается множество веществ, относящимся к органическим.

Для пищевой промышленности водород используется во время изготовления маргарина, состоящего из твердых жиров растительного происхождения. Гидрогенизация дает возможность жидкие растительные масла превратить в затверделый жир. Химический элемент может выступать как пропеллент — защитная среда упаковки с пищевыми продуктами.

Использование водорода в металлургии

С помощью водорода удается восстановить первоначальные свойства определенных металлов,состоящих из их оксидов (вольфрам). При его горении в кислороде достигается температура в среднем 3000 °C. Данные условия позволяют выполнять плавление и сваривание металлов тугоплавкого типа.

Использование водорода в промышленности можно наблюдать на примере металлургии. данной отрасли он задействуется с целью восстановительного процесса металлов из оксидов. В результате удается получить сплавы, относящиеся к тугоплавким. Затем водородно-кислородное пламя, отличающееся высокой температурой, обладает способностью расплавлять их и сваривать. Для таких целей задействуется горелка, спроектированная по аналогии ацетиленокислородной.

Преимущества применения водорода

Водород, пребывающий в жидком состоянии, является отличным вариантом топлива для ракет. Также активно идет работа, чтобы в будущем использовать его в виде горючего для силового агрегата машин. Воплощение в жизнь данной идеи положительно скажется на экологической ситуации, так как при сгорании водорода в атмосферу не попадают опасные компоненты, наносящиеся непоправимый вред окружающей среде.

Одним из основных потребителем химического элемента являются предприятия, работающие в сфере нефтехимии и занимающиеся переработкой нефти. Здесь расход водорода, который добывается промышленным методом, достигает отметки 50% от общего числа. Большое количество полимеров, соединений углеводородного типа и масс, с пластическими свойствами, получают исключительно из водорода.

Газообразное вещество благодаря отличной теплопроводности и отсутствию в составе вредных компонентов оптимально подходит для снижения уровня нагрева турбогенераторов, характеризующихся высоким запасом мощности. В условиях повышенной температуры водород демонстрирует регенерацию, беря на себя атомы кислорода, находящиеся в оксидах металлов. Это дает возможность применять его для прямого восстановления руды.

В зависимости от отрасли газообразная консистенция выступает как основной элемент, дополнительный материал либо горючее.

Cогласно статистическим данным востребованность водорода стремительно растет и его использование каждые 15 лет удваивается в несколько раз.

Нужна консультация по выбору генератора водорода? Звоните!

+7 (800) 505-42-68

или оставте заявку онлайн

Наши консультанты помогут Вам в выборе подходящего оборудования и предложат различные варианты модификаций товара.

Оставить заявку

www.oxymat.ru

Получение водорода Википедия

Электролизёр — оборудование для производства водорода из воды

Промышленное производство водорода — неотъемлемая часть водородной энергетики, первое звено в жизненном цикле употребления водорода. Водород практически не встречается в природе в чистой форме и должен извлекаться из других соединений с помощью различных химических методов.

Методы производства водорода

Разнообразие способов получения водорода является одним из главных преимуществ водородной энергетики, так как повышает энергетическую безопасность и снижает зависимость от отдельных видов сырья.

К ним относятся:[источник не указан 1095 дней]

В данный момент наиболее доступным и дешёвым процессом является паровая конверсия. Согласно прогнозам, она будет использоваться в начальной стадии перехода к водородной экономике для упрощения преодоления проблемы «курицы и яйца», когда из-за отсутствия инфраструктуры нет спроса на водородные автомобили, а из-за отсутствия водородных автомобилей не строится инфраструктура. В долгосрочной перспективе, однако, необходим переход на возобновляемые источники энергии, так как одной из главных целей внедрения водородной энергетики является снижения выброса парниковых газов. Такими источниками может быть энергия ветра или солнечная энергия, позволяющая проводить электролиз воды.

Производство водорода может быть сосредоточено на централизованных крупных предприятиях, что понижает себестоимость производства, но требует дополнительных расходов на доставку водорода к водородным автозаправочным станциям. Другим вариантом является маломасштабное производство непосредственно на специально оборудованных водородных автозаправочных станциях.

Производство водорода из различных источников сырья

Из углеводородов

Паровая конверсия природного газа / метана

Водород можно получать разной чистоты: 95-98% или особо чистый. В зависимости от дальнейшего использования водород получают под различным давлением: от 1,0 до 4,2 МПа. Сырье (природный газ или легкие нефтяные фракции) подогревается до 350-400° в конвективной печи или теплообменнике и поступает в аппарат десульфирования. Конвертированный газ из печи охлаждается в печи-утилизаторе, где вырабатывается пар требуемых параметров. После ступеней высокотемпературной и низкотемпературной конверсии СО газ поступает на адсорбцию СО2 и затем на метанирование остаточных оксидов. В результате получается водород 95-98,5% чистоты с содержанием в нем 1-5% метана и следов СО и СО2.

В том случае, если требуется получать особо чистый водород, установка дополняется секцией адсорбционного разделения конвертированного газа. В отличие от предыдущей схемы конверсия СО здесь одноступенчатая. Газовая смесь, содержащая h3, CO2, Ch5, h3O и небольшое количество СО, охлаждается для удаления воды и направляется в адсорбционные аппараты, заполненные цеолитами. Все примеси адсорбируются в одну ступень при температуре окружающей среды. В результате получают водород со степенью чистоты 99,99%. Давление получаемого водорода составляет 1,5-2,0 МПа.

В настоящее время данным способом производится примерно половина всего водорода. Себестоимость процесса $2-5 за килограмм водорода. В будущем возможно снижение цены до $2-$2,50, включая доставку и хранение.

Газификация угля

Старейший способ получения водорода. Уголь нагревают при температуре 800°—1300° Цельсия без доступа воздуха. Первый газогенератор был построен в Великобритании в 40-х годах XIX века. США предполагают построить электростанцию по проекту FutureGen, которая будет работать на продуктах газификации угля. Электричество будут вырабатывать топливные элементы, используя в качестве горючего водород, получающийся в процессе газификации угля.

В декабре 2007 г. была определена площадка для строительства первой пилотной электростанции проекта FutureGen. В Иллинойсе будет построена электростанция мощностью 275 МВт. Общая стоимость проекта $1,2 млрд. На электростанции будет улавливаться и храниться до 90 % СО2.

Себестоимость процесса $2-$2,5 за килограмм водорода. В будущем возможно снижение цены до $1,50, включая доставку и хранение.

Из биомассы

Водород из биомассы получается термохимическим, или биохимическим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500°-800° (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется h3, CO и Ch5.

Себестоимость процесса $5-$7 за килограмм водорода. В будущем возможно снижение до $1,0-$3,0.

В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes.

Возможно применение различных энзимов для ускорения производства водорода из полисахаридов (крахмал, целлюлоза), содержащихся в биомассе. Процесс проходит при температуре 30° Цельсия при нормальном давлении. Себестоимость водорода около $2 за кг.

Из цепочки сахар-водород-водородный топливный элемент можно получить[1] в три раза больше энергии, чем из цепочки сахар-этанол-двигатель внутреннего сгорания.

Из мусора

Разрабатываются различные новые технологии производства водорода. Например, в октябре 2006 года Лондонское Водородное Партнёрство опубликовало исследование (недоступная ссылка) о возможности производства водорода из муниципального и коммерческого мусора. Согласно исследованию, в Лондоне можно ежедневно производить 141 тонну водорода как пиролизом, так и анаэробным сбраживанием мусора. Из муниципального мусора можно производить 68 тонн водорода.

141 тонны водорода достаточно для работы 13750 автобусов с двигателями внутреннего сгорания, работающими на водороде. В Лондоне в настоящее время эксплуатируется более 8000 автобусов.

Химическая реакция воды с металлами

В 2007 году Университет Purdue (США) разработал метод производства водорода из воды при помощи алюминиевого сплава.

Сплав алюминия с галлием формируется в пеллеты. Пеллеты помещают в бак с водой. В результате химической реакции производится водород. Галлий создаёт вокруг алюминия плёнку, предотвращающую окисление алюминия. В результате реакции создаётся водород и оксид алюминия.

Из одного фунта (≈453 г) алюминия можно получать более 2 кВт·ч энергии от сжигания водорода и более 2 кВт·ч тепловой энергии во время реакции алюминия с водой. В будущем, при использовании электроэнергии атомных реакторов 4-го поколения, себестоимость водорода, получаемого в ходе реакции, станет эквивалента цене бензина $3 за галлон (≈3,8 л).

Автомобиль среднего размера с двигателем внутреннего сгорания с 350 фунтами (158 кг) алюминия на борту может проехать 350 миль (560 км). В будущем стоимость такой поездки составит $63 (0,11 $/км), включая стоимость восстановления оксида алюминия на атомной электростанции 4-го поколения.[2]

С использованием водорослей

Учёные калифорнийского университета в Беркли (UC Berkeley) 1999 году обнаружили[источник не указан 976 дней], что если водорослям не хватает кислорода и серы, то процессы фотосинтеза у них резко ослабевают, и начинается бурная выработка водорода.

Водород может производить группа зелёных водорослей, например, Chlamydomonas reinhardtii. Водоросли могут производить водород из морской воды, или канализационных стоков.

Домашние системы производства водорода

Вместо строительства водородных заправочных станций водород можно производить в бытовых установках из природного газа, или электролизом воды. Honda испытывает свою бытовую установку под названием Домашняя энергетическая станция Honda. Установка в бытовых условиях производит водород из природного газа. Часть водорода используется в топливных элементах для производства тепловой и электрической энергии для дома. Оставшаяся часть водорода используется для заправки автомобиля.

Британская компания ITM Power Plc разработала и испытала в 2007 г. бытовой электролизёр для производства водорода. Водород производится ночью, что позволит сгладить пики потребления электроэнергии. Электролизер мощностью 10 кВт производит из воды водород, и хранит его под давлением 75 бар. Произведённого водорода достаточно для 40 км пробега битопливного (водород/бензин) Ford Focus. Компания планирует начать производство бытовых электролизеров в начале 2008 года. ITM Power уже достигла уровня себестоимости электролизеров $164 за 1кВт.

Крупнейшие производители водорода

См. также

Примечания

Ссылки

wikiredia.ru

Как получают водород в лаборатории и промышленности? Какими способами собирают водород в сосуд? На каких свойствах водорода основаны эти способы?

Химические свойства водородаЦель: Познакомить учащихся с химическими свойствами и его применением, провести лабораторный опыт, показывающий восстановительные свойства водорода. Ход урокаI. Организационный моментII. Проверка домашнего заданияРассказать о водороде, как о химическом элементе.Рассказать о водороде, как о простом веществе.Определите, в каких фразах о водороде говорится как о простом веществе, а в каких как о химическом элементе. 1. Водород входит в состав воды, кислот, природного горючего газа

2. Водород содержится в органических веществах

3. Один из способов получения водорода это разложение воды при действии постоянного электрического тока

4. В лабораторных условиях водород получают при взаимодействии некоторых металлов с кислотами (например, цинка с соляной кислотой)

5. Масса 1 л водорода составляет 0,09 г

6. При помощи стратостата, наполненного водородом, в 1933 г. русские стратонавты поднялись на высоту 19 км

7. Относительная атомная масса водорода равна 1

8. Гремучий газ это смесь, состоящая из двух объемов водорода и одного объема кислорода

Как получают водород в лаборатории и промышленности?Какими способами собирают водород в сосуд? На каких свойствах водорода основаны эти способы?Задача: Какой объём водорода образуется при разложении 18 мл воды электрическим током?

III. Изучение новой темы1. Химические свойства кислородаМолекула водорода образована двумя атомами водорода. Чтобы водород вступил в химическую реакцию с другим веществом необходимо разрушить его молекулу до атомов (т.е. разрушить связь между атомами). Связь между атомами прочная. Чтобы разрушить эту связь нужно приложить немалую энергию. Например, чтобы превратить 1 г молекулярного водорода в атомарный нужно затратить такое количество энергии, которого хватило бы чтобы вскипятить 0,5 литров воды. Поэтому при обычных температурах водород вступает в реакцию только с очень активными веществами. Например, с металлом натрием и неметаллом фтором. В остальных случаях реакции идут при высокой температуре или при наличии катализатора. Горение водорода2Н2+ О2 = 2Н2О – чистый водород горит ровным голубым пламенем, при этом выделяется большое количество теплоты. Пламя водорода – это раскалённый пар. Водород можно использовать как топливо, причём экологически чистое, т.к. при его горении не образуется вредных веществ. Но пока не найдено дешёвого способа получения водорода, поэтому как топливо его широко не используют. Лишь в реактивных двигателях. Смесь водорода с кислородом взрывается. Особенно сильный взрыв при отношении объёмов водорода и кислорода в смеси 2:1. Это так называемый «гремучий газ». Именно поэтому водород перед поджиганием необходимо проверять на чистоту. В пробирке этот взрыв безопасен. Если же взрыв произойдёт в сосуде с малым отверстием, то он разорвётся вдребезги, и осколки поранят окружающих.Получение аммиака3Н2 + N2 = 2Nh4 – аммиак в качестве раствора используют в медицине, в сельском хозяйстве для получения минеральных удобрений.Взаимодействие с металлами– с активными металлами реакци

docs4all.com