Рентгенографический контроль сварных соединений. Радиографический контроль сварных соединений трубопроводов


Радиографический контроль сварных соединений

С момента появления первых способов соединения деталей при помощи сварки встал вопрос о необходимости контроля качества соединительных швов. Опираясь на существующие технологии, разработчики создали различные методики, позволяющие с той или иной точностью выявить грозящие разрушению конструкций дефекты. Но среди них нет одного, универсального, способного удовлетворить все существующие запросы производства. На сегодняшний день при проведении сварочных работ всё равно приходится выбирать, чему следует отдать предпочтение.

cont_radio_07

  • Более простым и дешёвым процессам, не требующим наличия сложного оборудования, способным дать достаточно приблизительную оценку состояния шва.
  • Довольно сложным и дорогостоящим методикам, которые применимы только на располагающем определёнными технологическими возможностями производстве, зато показывающим более полную и объективную картину.

В ситуациях, когда прочность шва играет ключевую роль и недопустимы даже незначительные его дефекты, приходится задействовать пусть и затратные, но точные способы дефектоскопии. Именно к таким относится радиографический контроль сварных соединений.

Основанный на принципах просвечивания контролируемого участка детали рентгеновскими или гамма-лучами, метод радиографического контроля сварных швов – один из самых точных. Как и все технологически сложные процессы, он имеет свои достоинства и недостатки.

Признанные достоинства

Основными преимуществами подобного способа дефектоскопии принято считать:

  • Возможность выявления скрытых дефектов, находящихся внутри сварного шва. Поскольку невидимые снаружи каверны и трещины снижают прочность готового изделия точно так же, как и те, которые находятся на поверхности, их необходимо своевременно обнаружить, что простым методикам часто не под силу.
  • Высокую точность полученных данных, позволяющих оценить размеры и характер дефекта, место его расположения. На основании полученной информации появляется возможность выявить причину возникновения брака и принять меры к её устранению.
  • Малое время, необходимое для проведения обследования и оценки данных. Это означает, что метод радиографического контроля сварных швов применим не только на ответственных участках работы, но и в массовом производстве.
  • Возможность документирования результатов. Подобно тому, как врач подшивает в медицинскую карту больного рентгеновский снимок, проводящий технологический контроль специалист может подшить в паспорт готового изделия снимок с точными данными обследования.

Существующие недостатки

Широкому распространению современной технологии мешают существенные и пока не устранённые недостатки.

  • Требуется наличие сложного специального оборудования. Такое оснащение стоит денег, а это значит, что его покупка не под силу организациям с ограниченным бюджетом. Для домашнего пользования подобная методика точно не подходит.
  • Необходимы специфические расходные материалы, доступ к которым ограничен.
  • Обязателен жёсткий контроль за правильным использованием оборудования и оборотом расходных материалов, поскольку при нарушении инструкций по их применению и хранению они могут представлять опасность для здоровья и даже жизни людей.
  • Работающий с оборудованием и материалами персонал должен обладать необходимой, довольно высокой, квалификацией. Освоить сложный процесс под силу далеко не каждому.

Основываясь на перечисленных достоинствах и недостатках, следует оценивать для каждого конкретного случая необходимость в оснащение производства участком радиографического контроля сварных швов.

Основные принципы

nc1

Суть процесса, нормируемого ГОСТ 7512-86, состоит в просвечивании контролируемого участка рентгеновскими или гамма-лучами от источника, помещённого в специальную защитную капсулу. Эта капсула необходима для того, чтобы защитить от вредного излучения находящихся поблизости людей и оборудования. Поскольку однородный металл поглощает лучи лучше, чем нарушающие его структуру пустоты, то места дефектов проявляются в виде светлых пятен, форма и размеры которых соответствуют форме и размерам выявленных трещин, каверн и других пустот. При этом регистрация результатов дефектоскопии может производиться различными способами.

  • На бумагу или плёнку, поверхность которых покрыта слоем химического вещества, чувствительного к излучению. Такой метод фиксации данных дефектоскопии точен, но снижает скорость проведения обследования. Он хорошо зарекомендовал себя при изготовлении ограниченных партий ответственных деталей высокой точности.
  • С помощью специальных веществ, получивших название «сцинтилляторы», обладающих способностью поглощать не видимое глазу излучение и преобразовывать его в видимый свет. С помощью нехитрого преобразователя получаемое при этом изображение выводится на монитор, что даёт возможность производить дефектоскопию сварного шва в реальном времени. Эта технология подходит для массового производства, а также применяется для контроля сварных соединений строящихся и ремонтируемых трубопроводов. В последнем случае капсулу с излучающим веществом, как правило, помещают внутрь трубопровода и, вместе с остальным оборудованием, выполняют мобильной.

Ключевые моменты

Для того чтобы результаты радиографического контроля были достоверны, следует выполнить ряд условий.

  • С поверхности контролируемого шва удаляются окалина, шлак и другие загрязнения, из-за которых может быть искажена реальная картина.
  • Плотность потока излучения должна быть достаточной для того, чтобы сделать возможным регистрацию толщины контролируемого объекта.
  • На протяжении всего времени обследования плотность излучения должна быть стабильной и иметь постоянный характер.
  • Согласно требованиям ГОСТ, для каждого объекта контроля разрабатываются технологические карты.

Характеристики источника излучения подбираются в зависимости от типа исследуемого материала и его толщины. Только когда перечисленные требования соблюдены, можно полностью полагаться на полученные результаты.

Безопасность – превыше всего!

Одной из важнейших проблем, которую следует решить, используя методику радиографического контроля сварных соединений, это обеспечение мер по технике безопасности.

  • Во избежание широкого распространения излучение, используемое оборудование должно быть надёжно экранировано. В качестве одного из возможных вариантов защиты, подойдут листы свинца. Впрочем, современная промышленность производит и другие материалы, вроде специальных пластиков и даже тканей. Их также можно использовать, ведь главное – чтобы защита была герметична и хорошо выполняла своё назначение.
  • Оператор, управляющий процессом, должен быть максимально удалён от установки, а посторонние лица удалены из зоны, где производится обследование.
  • Если возникла острая необходимость пребывания людей в зоне повышенной опасности при работе оборудования, то работников нужно обеспечить средствами индивидуальной защиты. Время самого пребывания в зоне контроля следует максимально сократить, поскольку даже малые дозы излучения накапливаются с течением времени, оказывая негативное влияние на организм человека.
  • При использовании в качестве источника излучения радиоактивных веществ, обеспечить их безопасное хранение, а также транспортировку к месту проведения работ.

Недопустимо использовать заведомо неисправную технику. Это может повлиять не только на результаты дефектоскопии. Под угрозой окажется здоровье людей, причём не только тех, что обеспечивают функционирование оборудования. Излучение, накопленное в самой детали, способно оказать негативное воздействие на всех, кто даже случайно оказался рядом.

Область применения

Несмотря на определённые трудности, связанные с использованием, радиография находит всё более широкое применение. Основная причина – высокая точность получаемых результатов. К тому же, методика позволяет решить такую проблему, как обнаружение внутренних дефектов. При правильном подходе, технология может с успехом использоваться почти во всех областях промышленности и строительства.

  • Возведение несущих каркасов многоэтажных зданий или безопорных перекрытий.
  • Изготовление корпусов судов вне зависимости от конструктивных особенностей их набора и обшивки.
  • Прокладка трубопроводов, по которым впоследствии будут перекачиваться различные виды топлива или просто вода, пищевые продукты или ядовитые химикаты.
  • Производство подвергающихся высоким нагрузкам особо ответственных деталей самолётов и ракет.
  • Проверка находящихся в длительной эксплуатации металлических конструкций путепроводов и мостов.
  • Контроль состояния сварных швов оружейных систем.
  • Изготовление высокоточного медицинского оборудования.

Во всех этих случаях может быть использован радиографический метод контролья.

Важно учесть заблаговременно

Собираясь приобрести промышленный рентгенографический аппарат, нужно точно определиться, какие детали и материалы предстоит обследовать с его помощью. Ведь на сегодняшний день выпускается большое количество подобного рода систем, а характеристики каждой модели имеют определённые ограничения. Всё поступающее на рынок оборудование рассчитано на выполнение узкого круга задач. Ввиду того что устройства проходят обязательную сертификацию и представляют повышенную опасность, их самостоятельное изготовление недопустимо!

Рентгеновские аппараты

По своей конструкции рентгеновские аппараты отличаются характеристиками излучающей трубки, на которые в первую очередь влияют сила тока, его напряжение и габариты излучателя. Отталкиваясь от этих параметров устройства с различным размером фокусного пятна, углом выходя излучения и максимально возможной толщиной просвечиваемой стали. Встречаются рентгеновские аппараты непрерывного и импульсного действия, кабельные и моноблочные.

Гамма-дефектоскопы

В некоторых случаях для обеспечения радиографического контроля предпочтительнее использование не рентгеновской аппаратуры, а гамма-дефектоскопов, внутрь которых помещают закрытые радиоактивные источники. В качестве излучающего материала могут быть задействованы изотопы тулия, селена, иридия, цезия, кобальта и т. п. Возможности оборудования, например, толщина просвечиваемого металла, во многом зависят от используемого радиоактивного вещества, при замене которого изменяются и характеристики излучения.

Важный стандарт

Для ознакомления с требованиями к радиографическому контролю в полном объёме целесообразно изучить ГОСТ 7512-86. В этом документе имеется вся необходимая информация. Тем же, кто собирается использовать методику на производстве, изучение стандарта строго обязательно, поскольку ответственность за его несоблюдение нешуточная.

Поделись с друзьями

0

0

0

0

svarkalegko.com

Рентгенографический контроль сварных соединений трубопроводов

Во время соединения металлических деталей с помощью сварки может возникнуть ситуация, которая затруднит образование нормального однородного шва. Когда в сварочную ванну попадают посторонние предметы или элементы, а также выбран неправильный режим сваривания, то вполне возможно образование брака. Это приводит к тому, что шов будет иметь более низкое качество и сможет выдержать меньшее количество нагрузок, чем предполагалось. Далеко не все виды дефектов можно увидеть сразу, так как зачастую они имеют скрытый характер. В особенности это относится к мелким трещинам и порам. Требования к сварным соединениям здесь могут быть очень высокими, так что любой недочет может привести к серьезным последствиям.

Рентгенографический контроль сварных соединений

Рентгенографический контроль сварных соединений

Рентгенографический метод контроля сварных соединений это один из самых достоверных способов. Данный метод особенно популярен при проверке соединений технологических трубопроводов, различного ответственного оборудования, металлических конструкций и прочих материалов, применяющихся в самых разнообразных отраслях. Чаще всего высокие нагрузки встречаются в строительстве. Рентген контроль сварных соединений проводится по ГОСТ 7512-86.

Данный принцип основан на поглощении лучей плотными средами. Чем более плотная структура, тем меньше лучей пройдет наружу. Если внутри шва есть трещины, раковины, поры и прочие полые дефекты, то количество прохождения лучей здесь будет значительно большим. Регистрирующее устройство сможет выявить наличие дефекта, его размер, место расположения и другие особенности. Такими качествами не обладает ни один другой метод. Рентгеновский контроль сварных соединений является детальным показателем состояния локальных участков металлоконструкций

Свойства рентгеновских лучей

Лучи могут проходить через плотные непрозрачные тела, но чем выше плотность этих тел, тем ниже пропускание лучей. Проходимость зависит и от длины лучей. При большой длине им сложнее пройти сквозь плотные поверхности. Во время прохождения лучи поглощаются той поверхностью, с которой соприкасаются. Чем выше плотность, тем больше поглощение.

Принцип рентгенографическогой контроля сварных швов

Принцип рентгенографическогой контроля сварных швов

Некоторые химические вещества при контакте с излучением получают видимое свечение. После окончания воздействия свечение прекращается, но некоторые вещества сохраняют заряд свечения еще на некоторое время. Это свойство является основой для создания рентгеновских снимков в данном методе. Воздействие лучей на светочувствительную часть фотопластинок создает изображение внутреннего состояния шва.

При воздействии лучей на клетки организма они производят определенные воздействия, которые зависят от типа ткани и интенсивности полученной дозы. Это может использоваться в медицине, но также имеет и обратный эффект, который проявляется в лучевой болезни.

Лучи могут ионизировать воздух, расщепляя составные части воздушной массы на отдельные частицы, имеющие электрический заряд. Из-за этого воздух может проводить электричество.

Преимущества

  • Рентгенографический контроль сварных соединений трубопроводов является одним из самых точных и надежных методов дефектоскопии;
  • Можно увидеть скрытые дефекты;
  • Возможно определение абсолютных и относительных размеров бракованного места;
  • Скорость проведения процедур достаточно высокая.

Недостатки

  • Эффективность метода зависит от правильности установки параметров;
  • Оборудование для его проведения имеет высокую стоимость;
  • Здесь нужно использовать особую пленку для фиксации результата;
  • Это опасный для здоровья метод дефектоскопии сварных швов.

Устройство и принцип работы оборудования

Излучающий элемент представлен в виде вакуумного сосуда, в котором находится три электрода: анод, накал катода и катод. Сами рентгеновские лучи возникают тога, когда заряженные частицы получают сильное ускорение. Это может случиться и при высокоэнергетическом переходе, что происходит в оболочке атомов. Рентгенографические трубки используют оба этих варианта. Основным конструктивным элементом устройства выступает анод и катод.

Устройство для рентгенографическогой контроля сварных соединений

Устройство для рентгенографическогой контроля сварных соединений

Электроны, которые испускаются катодом получают ускорение от различных электрических потенциалов, находящихся в области между анодом и катодом. В это время рентгеновские лучи еще не испускаются, по причине малого своего количества. Они ударяются об анод, после чего происходит их резкое торможение. За счет этого происходит генерация лучей в рентгеновском диапазоне. В это же время из внутренних оболочек атомов анода выбиваются электроны. На места выбитых частиц становятся другие электроны. Выпускаемое излучение приобретает характерные черты, которыми обладает материал анода.

Когда лучи уже вышли, то они передвигаются в соответствии с заданным направлением сквозь выбранный участок шва. Затем они сталкиваются с плотной поверхностью и часть остается в металле. Остальные частицы, которым удалось прорваться, попадают на пленку. Там отображается интенсивность излучения в каждом отдельном месте. При наличии пустых мест в структуре наплавленного металла, количество лучей становится большим. Таким образом можно выявить где находится тот или иной дефект, а также какой он формы и размера.

Методика проведения контроля

Методика проведения рентгенографического контроля сварных соединений очень схожа с радиографическим контролем. Первым делом происходит настройка аппаратуры под определенную плотность металла, чтобы излучение смогло пройти сквозь его поверхность. Затем происходит подготовка сделанного шва к контролю. Для этого с него оббивают шлак, обрабатывают до требуемой высоты валика и зачищают саму поверхность.

После этого изделие перемещается в аппарат на то место, где будет происходить выпуск лучей. Оно должно находиться между излучателей и фотопленкой. Затем включается аппарат и лучи моментально проникают сквозь сварной шов, попадая в итоге на пленку. На ней отображаются все неровности интенсивности, которые показывают наличие дефектов.

«Важно!

Данный процесс может оказать вред здоровью, так что необходимо соблюдать все правила техники безопасности.»

Меры по технике безопасности

Чтобы сохранить свое здоровье при частом проведении подобных процедур, следует придерживаться ряда предписанных требований. В первую очередь, устройство должно быть экранировано, чтобы излучение не распространялось по всему помещению, а действовало только в строго направленное место. Для экранирования зачастую используют металлические пластины. Они же могут пригодиться для обустройства стен помещения, которые также должны быть ограждением для распространения излучения.

Во время работы следует держаться как можно дальше от излучателя, насколько это возможно. Также стоит уменьшить время пребывания в помещении во время работы техники. В данном месте не должно быть ни каких посторонних людей. Все работники должны иметь средства индивидуальной защиты.

Все работы должны проводиться только при условии, что техника исправна и правильно настроена. Стоит понимать, что минимальной дозы излучения сложно избежать, но она со временем накапливается, если процедуры проводятся часто и это может вызвать серьезные осложнения, перерастающие в хроническую профессиональную болезнь. Исходя из этого, необходимо следить за тем, какую дозу человек получает за один проход действия аппарата. Для этого используются специальные дозиметры. Также нужно обратить внимание на ионизацию воздуха в помещении, так как при сильно высоком ее уровне может случиться электрический разряд, потому что воздушная масса перестанет быть диэлектриком.

svarkaipayka.ru

Как проходит радиографический контроль сварных соединений

При соединении металлов с помощью сварки у неопытных мастеров могут возникнуть трудности. В частности, они могут просто не увидеть всех дефектов сварного шва, которые образовались из-за ошибок сварщика. Визуального контроля недостаточно, чтобы выявить скрытые недочеты. И если в условиях домашней сварки это не критично, то на крупном производстве бракованные изделия лишают прибыли.

рентгенография

Существует множество видов контроля сварных швов. От визуального, когда сварщик просто осматривает шов на предмет видимых дефектов, до передовых способов, для которых необходимо специальное оборудование. Об одном из таких способов мы и хотим вам рассказать. В этой статье вы узнаете, что такое радиографический контроль сварных соединений и какова его методика.

Содержание статьи

Общая информация

Радиографический метод контроля сварных соединений (также рентгенография, рентгеноскопия, рентгенографический контроль) — метод контроля качества с применением рентгеновских лучей. Специальный аппарат устанавливает на место сварного шва. Здесь все по аналогии с рентген аппаратом для снимков костей человека. Рентгеновские лучи пронизывают металл и в случае обнаружения внутренних дефектов легко выходят наружу. Ну а если структура шва плотная и не имеет дефектов, то луч просто не пройдет.

рентгенограф для контроля качества швов

Специальное устройство регистрирует прохождение лучей и делает снимок. На снимке без проблем можно обнаружить наличие дефектов, их размеры и точное расположение. Рентгеновский контроль сварных соединений — это один из наиболее точных методов контроля качества швов. Его часто используют при проверке трубопровода, ответственных изделий, металлоконструкций, к которым предъявлены повышенные требования качества. Особенно заметна популярность радиографического контроля в строительной сфере.

Принцип работы

«Сердцем» рентгеновского аппарата является излучатель, который генерирует и выпускает лучи. Излучатель представляет собой вакуумный сосуд, который содержит анод, катод и его накал. Все эти частицы заряжены и являются электродами. Во время их сильного ускорения как раз и образуются рентгеновские лучи. Это простейшее объяснение.

Читайте также: СНИП и контроль качества 

Для интересующихся объясним подробнее. Катод испускает электроны, которые ускоряются от электрического потенциала, образующегося между анодом и катодом. В этот момент рентгеновские лучи уже начинают образовываться, но их недостаточно. Однако, лучи все же сталкиваются с анодом и начинается их торможение. Из-за этого лучи начинают генерироваться сильнее. В тот же момент из-за столкновения начинают появляться электроны анода. Так образуются лучи, достаточные для формирования полноценного излучения.

проверка качества швов

Далее лучи выходят и пускаются в заданном направлении. Лучи сталкиваются с металлом и в случае наличия дефектов проходят сквозь него. Либо поглощаются металлом, если дефектов нет. Здесь нужно уточнить, что лучи поглощаются не полностью, некоторые частицы все же остаются. Именно они попадают на пленку и позволяют сделать снимок. На снимке фиксируется количество лучей, прошедших сквозь металл. Если дефектов много, то и лучей тоже будет много.  За счет такой особенности и получается узнать размер дефекта и его расположение.

Особенности рентгеновских лучей

Чтобы лучше понять суть рентгенографии нужно разобраться с особенностями самих лучей, благодаря которым как раз и возможен контроль. Лучи обладают свойствами, которые позволяют им проходить сквозь материалы. В нашем случае металл. Чем выше плотность металла, тем хуже проходят лучи. И, соответственно, чем ниже плотность металла, тем лучше они проходят. Здесь все просто: наименьшая плотность присутствует как раз в местах с дефектами.

Поэтому лучи беспрепятственно проходят сквозь металл и это фиксируется на специальном устройстве. Ну а если у шва нет дефектов и структура плотная, то лучи не пройдут, а просто поглотятся металлом. И чем выше плотность, тем больше степень поглощения.

Что касается снимков, то здесь тоже все просто. Существуют химические вещества, которые при контакте с рентгеновским излучением начинают буквально «светиться». Такими веществами покрывается светочувствительная часть фотопластинки, на которой затем появится снимок. Этот принцип является основой для создания рентгеновских снимков сварных швов.

Теперь о некоторых других особенностях. Наверняка вы слышали, что рентгеновское излучение в большом количестве может пагубно влиять на здоровье человека. Это правда. Лучи легко воздействуют на ткани и клетки, облучая их за считанные минуты. В больших дозах это может привести к лучевой болезни. Так что нужно соблюдать осторожность, если вы используете радиографический метод контроля сварных соединений.

 

Еще один интересный факт: благодаря излучения привычный нам воздух способен проводить электрический ток. Это связано с тем, что рентгеновские лучи ионизируют воздух и расщепляют его частицы на небольшие составляющие, которые в свою очередь имеют электрический заряд.

Плюсы и минусы метода

Плюсы:

  • Рентгенографический контроль сварных соединений — один из самых достоверных методов контроля качества швов.
  • С помощью этого метода за считанные минуты выявляются дефекты любого уровня.
  • Есть возможность определить точный размер и расположение дефекта.
  • Контроль занимает мало времени и требует только рентген-аппарат.
  • Возможен контроль сварных соединений трубопроводов и любых других сложных систем.

Минусы:

  • Качество контроля напрямую зависит от настройки рентген-аппарата.
  • Современные рентген-аппараты стоят дорого, особенно компактные модели, которые так популярны в строительной сфере.
  • Для работы понадобится специальная светочувствительная пленка, которая также стоит недешево.
  • Этот метод контроля сварных швов сопряжен с опасностью для здоровья.

Методика контроля

Методика радиографического контроля проста и во многом схожа с обычной рентгенографией, которую мы делаем в поликлинике. Сначала контролер или ответственное лицо устанавливает необходимые настройки аппарата, учитывая плотность металла. Помните, что именно плотность влияет на конечный результат.

рентгенографический метод контроля качества

Далее подготавливается сварное соединение. Нужно удалить шлак, обработать валик шва и зачистить металл. Затем либо деталь помещается в аппарат (если контроль стационарный в отдельной комнате), либо аппарат помещается на соединение (если контроль выездной и используются компактные модели). Шов должен находиться между излучателем и пленкой. Излучатель включается, лучи проходят сквозь металл и попадают на пленку. Мы получаем снимок, на котором видны все дефекты. Теперь можно выключить аппарат и подождать 10-20 секунд. Затем деталь извлекается из ренигенографа (или рентгенограф снимается с металла). Снимки отдаются специалисту для их изучения или остаются у контролера.

Техника безопасности

Как мы уже говорили, данный метод контроля сопряжен с некоторой опасностью для здоровья. Не нужно пренебрегать этим, думая, что небольшие дозы радиации не повлияют на вас. Если вы работаете контролером и постоянно имеете дело с рентгенографией, то соблюдайте следующие рекомендации.

Во-первых, самое главное правило при работе с рентгеном — нужно экранировать прибор. Это не даст лучам распространяться за пределы зоны контроля. Для этих целей можно использовать металлические листы. Если вы работаете в помещении, то его стены также должны быть оборудованы экранирующими пластинами. Так лучи не будут представлять опасности для других работников, находящихся на объекте или в цеху.

Во-вторых, постарайтесь как можно меньше времени проводить рядом с аппаратом. Если вы проводите радиографический метод контроля сварных соединений на улице, то лучше отойдите в сторону. Если вы работаете в помещении, то постарайтесь сократить время своего пребывания в нем. Также на вас должны быть средства индивидуальной защиты. В помещении и рядом с аппаратом на улице не должны проходить посторонние работники.

В-третьих, перед началом работ нужно убедиться, что аппарат работает исправно и все настройки выставлены правильно. Большинство несчастных случаев связаны именно с неправильной настройкой или неисправностью рентгена.

В-четвертых, следите за дозой лучей, которые вы получаете при каждом контроле. Да, небольшие дозы не вредны для здоровья, но они обладают свойством накапливания и в конечном итоге могут стать причиной серьезных заболеваний. Следите, чтобы полученная вами доза радиации успевала выводиться из организма до начала следующего контроля. Чтобы узнать дозу можно использовать дозиметр.

В-пятых, не забывайте, что из-за лучей воздух может сильно ионизироваться, что приведет к образованию электрического тока. Следите за допустимым значением ионизации воздуха, особенно, если работаете в закрытом помещении.

Вместо заключения

Вот и все, что мы хотели рассказать вам о рентгенографическом методе контроля. Это один из самых точных и достоверных способов выявить скрытые от глаз дефекты. С его помощью можно провести контроль как на производстве, так и на выезде, поскольку производители предлагают компактные модели. Их легко можно взять с собой и выполнять контроль даже под открытым небом.

Конечно, радиографический контроль сварных соединений требует определенных знаний и опыта, чтобы читать снимки. Но вместе с тем вы получаете навык, который поможет вам безошибочно выявлять дефекты даже в идеальных на вид швах. А вы использовали в работе рентгенограф? Поделитесь в комментариях своим опытом контроля качества швов с помощью данного прибора, это будет полезно для наших читателей. Желаем удачи в работе!

[Всего голосов: 0    Средний: 0/5]

svarkaed.ru

Радиографический метод контроля сварных соединений и швов

Среди всех возможных разновидностей, радиографический контроль сварных соединений является одним из самых точных. Он очень востребован в профессиональной сфере, где производятся качественные  изделия, рассчитанные на большую нагрузку. В них, как правило, не допускается наличие каких-либо непроваренных мест, микротрещин, раковин, пор и прочих видов брака. Далеко не все из них можно выявить визуально, поэтому, применяется именно такой способ контроля качества. Он относится к неразрушающему типу, поэтому, изделия после осмотра можно вводить в эксплуатацию.

Радиографический контроль сварных соединений

Радиографический контроль сварных соединений

Радиографический контроль сварных соединений основан на принципе прохождения гамма лучей, а также рентгеновского излучения сквозь твердые поверхности. При прохождении лучи сталкиваются с материалом и лишь часть из них проходит. Если в сварном шве есть поры, раковины и прочие дефекты, создающие неоднородность структуры, то в них будет проходить большее количество лучей, чем в остальных участках. Это помогает точно выявить не только наличие брака, но и его размеры, тип и место расположения. Фиксируются результаты на специальной пленке, что является еще одним преимуществом данного метода. Данная процедура проводится по ГОСТ 7512-86.

Преимущества

  • Один из самых точных методов неразрушимого контроля;
  • Позволяет выявлять скрытые дефекты;
  • Благодаря ему можно точно определить размеры и место расположения проблемного участка;
  • Проводится за относительно короткий промежуток времени, так что не нужно будет долго ждать результатов;
  • Радиографический метод сварных соединений является самым современным способом проведения контроля, который предназначен для ответственных объектов.

Недостатки

  • Сложен в исполнении, так что не каждому человеку и организации он доступен;
  • Требует применения дорогостоящего оборудования;
  • Необходимо использовать уникальные расходные материалы;
  • Представляет опасность для здоровья человека, так как работа ведется с вредными излучениями.

Устройство и принцип работы радиографической установки

Радиографический контроль сварных соединений производятся при помощи специального устройства, которым выступает радиографическая установка. Радиационное изображение, которое поступает на нее, преобразуется в цифровое изображение. Это изображение затем обрабатывается и выводится на отображающее устройства. Данный метод становится возможным благодаря тому, что детектором для контролирования процедуры выступает фотодиод, на котором установлен сцинтиллятор. Лучи воздействуют на сцинтиллятор, после чего выпускают видимый свет. Выход данного света пропорционален полученной квантовой энергии. Таким образом, исходящее излучение света вызывает ток в самом фотодиоде.

Радиографическая установка

Радиографическая установка

Радиографический метод контроля базируется на преобразовании детектором проходящего сигнала, проникающего сквозь металлическое изделие. Чем выше интенсивность пройденных гамма лучей, а это возможно только при наличии полых дефектов, тем выше уровень освещенности на получаемом изображении. Стоит отметить, что контроль стыков радиографическим методом требует не один детектор, а несколько. Каждый из них снабжается собственным усилителем, которые объединяются в один независимый канал, куда входят все имеющиеся детекторы. Чем больше необходимая ширина контролируемого участка, тем большее количество детекторов требуется. Все каналы в данном случае опрашиваются по очереди.

Радиографическая установка для контроля сварных швов

Радиографическая установка для контроля сварных швов

Такое устройство способно контролировать практически все виды сварных соединений и швов. Стоит отметить, что световое излучение является аналоговым сигналом, поэтому, для его преобразования в цифровой формат требуется специальный аналогово-цифровой преобразователь. Весь массив информации передается на компьютерное устройство. Там данные сохраняются для архивирования и дальнейшего, более детального, изучения. На экране данные отображаются в виде полутонового изображения.

Методика проведения контроля

Радиографический контроль сварных соединений при настроенной аппаратуре проводится достаточно просто:

  • На первом этапе изделие подготавливают к просвечиванию, для чего нужна очистка поверхности от шлака и других лишних предметов;
  • Затем изделие помещается так, чтобы шов находился между излучателем и приемником машины;
  • Затем идет включение лучей аппарата, которые проходят сквозь металл шва и попадают на датчик с другой стороны;
  • Затем датчик считывает полученную информацию и выводит данные на экран или на специальную пленку, где их можно сохранить для дальнейшего использования.

Требования к устройствам

Когда происходит радиографический контроль сварных соединений, то на интенсивность проходящих лучей нельзя оказать ни какого действия. Это же касается чувствительности контроля. Изображение, которое фиксируется на пленке, определяется посредством интегральной дозы излучения, которое проходило в период экспозиции.

Контроль сварных соединений радиографическим способом

Контроль сварных соединений радиографическим способом

Это является одной из причин, что в то время, когда происходит радиографический контроль сварных соединений, разрешают применять практически любые рентгеновские аппараты. Такая величина как флуктуация для данного метода не является критичной. Все время сканирования занимает десятые доли секунды. Исходя из этого, выделяют два основных требования:

  •  Плотность гамма-лучей в потоке, который проходит сквозь толщину контролируемого изделия, должна быть достаточно большой, чтобы можно было зарегистрировать изменение толщины объекта на сканируемой области;
  • На протяжении всего времени изучения интенсивность лучей должна иметь постоянный характер.

Все этого говорит о том, чтобы радиографический контроль сварных швов прошел как можно более качественно, необходимо иметь стабильный источник ионизирующего излучения с максимально большой плотностью потока лучей и максимальным энергетическим спектром.

Меры по технике безопасности

Инструкция техники безопасности, при таком процессе как радиографический контроль сварных соединений, предполагает выполнения ряда требований, таких как:

  • Экранирование самого прибора, чтобы не было широкого распространения вредного излучения;
  • Сделать расстояние от человека до устройства как можно большим;
  • Ограничить промежуток времени пребывания в зоне потенциальной опасности;
  • Использовать средства индивидуальной защиты, такие как свинцовые щитки.

Место, где проходит радиографический контроль сварных швов, должно иметь защитное покрытие, которым зачастую выступают свинцовые листы. В помещении не должно быть посторонних людей, так как проводить процедуру должны только специалисты. Если техника не исправна, то использовать ее нельзя, потому что это может вызвать непредсказуемые последствия. Радиографический метод неразрушающего контроля оказывает минимальное воздействие на человека, но при частом столкновении с ним полученная радиация накапливается, поэтому, необходимо следить за тем, чтобы не превысить минимально допустимую дозу облучения.

svarkaipayka.ru

Рентгенографический контроль сварных швов и соединений

Являясь фактически одной из разновидностей радиографического контроля, этот метод не требует применения используемых в гамма-дефектоскопах радиоактивных изотопов. Источником излучения в этом случае являются рентгеновские лампы. Генерируемые лампой лучи проходят через обследуемый участок детали. При этом они интенсивнее поглощаются однородным металлом, а при прохождении сквозь пустоты, трещины или просто рыхлый металл, интенсивность поглощения снижается. Основываясь на этом эффекте, на различных светочувствительных материалах – бумаге, плёнке, пластиковых или стеклянных пластинах, получают изображение, где места дефекта выглядят более светлыми. Это позволяет зафиксировать результаты обследования документально. Если же применить специальный преобразователь излучения, то результаты дефектоскопии можно вывести на экран и, по полученному изображению, исследовать в реальном времени.

7-493

Возможности технологии

Используя рентгеновский контроль, удаётся с высокой степенью точности выявить:

  • Плохо проваренные места соединительных швов.
  • Трещины и каверны, причём даже те, которые находятся под поверхностью детали и не обнаруживаются другими методами дефектоскопии.
  • Включения инородных материалов – шлаков, окислов и т. п.

Также появляется возможность оценить вогнутость и выпуклость корня сварного шва.

Впрочем, с помощью прогрессивной технологии контроля удаётся обследовать не только детали, изготовленные из металла. Изменение интенсивности рентгеновского излучения регистрируется при его прохождении через минералы и полимеры, органические и неорганические вещества. Таким образом, значительно расширяется область применения рентгенографического контроля.

Достоинства и недостатки

Любым технологиям присущи как достоинства, так и недостатки. Именно они влияют на их развитие в первую очередь. Оценивая метод дефектоскопии, использующий рентгеновское излучение, к его достоинствам можно отнести:

  • Высокую точность получаемых данных. По этому параметру соперничать с рентгенографией очень трудно. Ведь с её помощью удаётся обнаружить не только дефекты микроскопического размера, но также определить форму и характер повреждения.
  • Возможность выявления скрытых дефектов, вне зависимости от глубины их расположения. При использовании большинства других способов контроля такая задача невыполнима.
  • Достаточно высокая скорость получения результатов, благодаря которой становится возможным использование технологии в массовом производстве и при изучении сварных швов большой суммарной протяжённости.

Что касается основных недостатков, то ими принято считать:

  • Значительную стоимость оборудования и сложность его обслуживания.
  • Опасность для здоровья, которую может представлять метод рентгеновского контроля при нарушении норм безопасности и неграмотном его использовании.
  • Необходимость в специальных расходных материалах для фиксации результатов.
  • Наличие способного работать на сложном оборудовании квалифицированного персонала, поскольку эффективность метода напрямую зависит от правильности его применения.
  • Влияние заданных параметров регулировки измерительной аппаратуры на точность результатов.

Как можно понять, недостатки являются хотя и сложными, но преодолимыми, а значит, не мешают внедрению рентгеновской дефектоскопии там, где в ней существует необходимость.

Как это работает

Очевидно, что для оценки возможностей технологии и особенностей её применения, желательно знать её основные принципы. В основе процесса – рентгеновское излучение, открытое ещё в 1895 году Вильгельмом Конрадом Рентгеном. Мог ли знать проводивший эксперименты знаменитый учёный, во скольких областях человеческой деятельности благодаря его открытию произойдут изменения?!

Во всех аппаратах, использующих описываемый принцип дефектоскопии, источником регистрируемого излучения служат рентгеновские трубки. Характеристики этих трубок влияют на возможности аппаратуры и результаты замеров. Максимальная толщина металла, которую способен просветить рентгеновский аппарат, напрямую зависит от излучения, жёсткость которого, в свою очередь, связана с параметрами подаваемого на трубку тока. По используемому напряжению оборудование делят на три основные группы.

  • Малого, в пределах от 60 до 120 кВ.
  • Среднего, от 200 до 400 кВ.
  • Высокого, от 1 до 2 МэВ, напряжения.

Если первые два типа удаётся сделать переносными, то последний может быть либо передвижным (установленным на самоходное или буксируемое шасси), либо стационарным.

Рентгеновские трубки высокого напряжения могут быть использованы для выявления дефектов в деталях, изготовленных из стали толщиной до 500 мм.

Благодаря особенностям конструкции рентгеновской трубки, предусмотрена возможность регулировки размеров фокусного пятна. Излучатель помещается внутрь специальной защитной капсулы, имеющей отверстие или прорезь, сквозь которые лучи направляют на исследуемый участок. В некоторых конструкциях аппаратов пятно фокусируется с помощью дополнительных линз.

Прошедшее сквозь материал излучение попадает на светочувствительный материал, оставляя на нём отпечаток, подобный тому, какие получаются при использовании технологии классической фотографии. В случаях, когда существует необходимость непрерывно получать данные в реальном времени, прибегают к использованию так называемых сцинтилляторов. Эти вещества обладают способностью преобразовывать невидимое жёсткое излучение в свет, видимый человеческому глазу, благодаря чему появляется возможность задействовать специальный преобразователь и вывести изображение на экран. Работающие по такому принципу установки иногда называют рентгенотелевизионными.

Некоторые особенности

В зависимости от устройства трубки аппараты делят на импульсные, в которых поток излучения выдаётся сжатыми порциями, и постоянного действия, где излучение идёт непрерывно. Ввиду того что при создании короткого импульса удаётся повысить пиковые значения излучателя без существенного увеличения его размеров и параметров напряжения, в последнее время именно таким аппаратам отдаётся предпочтение.

Важные моменты

В любом случае на конечные результаты проводимых замеров влияют несколько основных факторов.

  • Стабильность характеристик подаваемого напряжения.
  • Точные геометрические параметры контроля.
  • Регулировка размеров фокусного пятна.
  • Фокусное расстояние между дефектоскопируемым объектом и преобразователем излучения.

Согласно требованиям ГОСТ 7512-86, распространяющим своё действие на методы РК контроля, для каждого обследуемого изделия должна быть разработана технологическая карта. Это важно, поскольку свою эффективность рентгеновский контроль демонстрирует только при полном соблюдении всех нормативов.

Нужно обеспечить безопасность

На участке производства, где используется полезная, но всё же опасная технология, существует очевидная необходимость в строжайшем соблюдении норм техники безопасности. Ведь полученное даже в малых дозах, жёсткое излучение накапливается в организме и способно нанести непоправимый вред здоровью. Чтобы этого не случилось, следует выполнять следующие правила.

  • При проведении замеров недопустимо присутствие на участке работ посторонних лиц. Даже допуск людей к прошедшим дефектоскопию деталям на какое-то время следует ограничить.
  • Всё излучающее оборудование должно быть надёжно защищено специальными экранами. В качестве материала для таких экранов может быть использован свинец, или иные вещества, поглощающие жёсткое излучение.
  • Управляющий процессом оператор должен быть максимально удалён от излучателя, а его рабочее место также защищено поглощающими экранами.
  • При необходимости посещения зоны повышенной опасности сотрудники должны быть обеспечены надёжными средствами индивидуальной защиты. Время их пребывания рядом с излучателем следует свести к минимуму.

Недопустимо использование неисправных рентгенографических установок. Ремонт оборудования должен производиться только квалифицированными специалистами, имеющими соответствующий допуск. Совершенно очевидно, что применять технологию в домашних условиях не стоит.

Попытки изготовить оборудование самостоятельно, а тем более выполнить с его помощью необходимые замеры, почти наверняка приведут к тяжелейшим последствиям для здоровья оказавшихся рядом людей. К счастью, в этом нет необходимости. Промышленность выпускает в достаточном количестве эффективные и вполне надёжные приборы, способные обеспечить точный рентгенконтроль. Нужно лишь правильно выбрать устройство, возможности которого соответствуют намеченным задачам.

Где можно применить?

При правильном подходе и соблюдении всех требований, технология безопасна и весьма эффективна. Она постепенно вытесняет устаревшие методы и всё чаще рентгенографические установки можно встретить в самых разных местах.

  • На строительстве новых или обслуживании уже находившихся в эксплуатации трубопроводов. Ведь это один из самых удобных способов проверки надёжности сварных соединений и герметичности трасс, по которым перекачиваются различные химические вещества.
  • В местах возведения многоэтажных зданий, от прочности несущего каркаса которых будут зависеть жизни огромного количества людей. Чтобы исключить ненужные риски, стоит проверить качество сварных швов заблаговременно.
  • На судостроительных верфях, де строятся огромные грузовые суда или фешенебельные пассажирские лайнеры. Лишь надёжным сварным соединениям не страшны шторма.
  • В цехах, где собирают на стапелях самые современные самолёты, и даже ракеты. Подняться в небо или достигнуть звёзд они смогут лишь в том случае, если их сварные швы не имеют дефектов.
  • У сборочных конвейеров, с которых сходят новейшие модели автомобилей. Количество звёзд, заработанных на краш-тестах, зависит от многих факторов. В том числе и от хорошо выполненной дефектоскопии.

Безусловно, это далеко не весь перечень возможностей рентгенографического контроля. Ведь подробное перечисление заняло бы не одну страницу. Вполне возможно, что именно сейчас кто-то придумал, как ещё можно использовать эту имеющую широкие возможности технологию.

Поделись с друзьями

0

0

0

0

svarkalegko.com

Радиографический контроль сварных соединений

Темы : Контроль качества сварки, Сварные соединения.

С учетом факторов, влияющих нa чувствительность контроля, изложенных на страницe Радиографический контроль кратко рассмотрим его операции нa примере радиографического контроля сварных соединений.

Радиографический контроль сварных соединений имеет такую последовательность выполнения основныx операций:

  • выбор источника излучения,
  • выбор радиографической пленки + опредeление оптимальных режимов просвечивания;
  • просвечивание объeкта;
  • проведение фотообработки снимков и иx расшифровки;
  • офоpмление результатов контроля.

Выбор источника излучения обусловливаетcя технической целесообразностью и экономическoй эффективностью. Основными факторами, опредeляющими выбор источника, являютcя: заданная чувствительность; толщина и плотность материала контролируемого издeлия; производительность контроля; конфигурaция контролируемой детали; доступность еe для контроля и дp.

Например, пpи контроле изделий, в которыx допускаются дефекты большого размера, целесообразнее применение изотопов с высокой энергией, обеспечивающих малое время просвечивания. Для издeлий ответственного назначения испoльзуют рентгеновское излучение и толькo как исключение - изотопы, имеющие пo возможности наимeньшую энергию излучения.

Выбор радиографической пленки осуществляетcя пo толщине и плотности материала просвечиваемогo объекта, а также пo требуемой производительности и заданнoй чувствительности контроля.

Рис. 1. Номограммы областей применения радиографических пленок пpи просвечивании стали: I - РT-5, РТ-4; II - PT-l, РТ-3; III - РT-2.

Пленку РТ-1 испoльзуют в основном для контроля сварных соединений большиx толщин, так как она обладаeт высокими контрастностью и чувствительноcтью к излучению. Универсaльную экранную пленку РТ-2 примeняют при просвечивании деталей различнoй толщины, при этoм время просвечивания пo сравнению c дpугими типами пленок наимeньшee. Для контроля издeлий из алюминиевых сплавов или сплавов черных металлов небольшой тoлщины подходит высококонтрастная пленка РT-З и РТ-4. Пpи дефектоскопии ответственных соединений применяется пленка РТ-5. Этa пленка обладает достаочно высокой контрастностью, позволяет выявлять незначительныe дефекты, хотя и имеeт наименьшую чувствительность к излучению, чтo и увеличивает время экспозиции пpи контроле. Ориентировочно радиографическую пленку целесообразно выбирать по номограммам (рис. 1).

Для контроля сварных соединений различныx типов выбирают одну из схeм просвечивания, приведенных нa риc. 2. Стыковые односторонние сварное соединения бeз разделки кромок, a такжe c V-образной разделкой просвечивают, кaк правило, пo нормали к плоскоcти свариваемых элементов (cм. рис. 2, схему 1). Швы, выполненныe двусторонней сваркой c К-образнoй разделкой кромок, целесообрaзнee просвечивать пo сxеме 2 c применением в ряде cлучаeв двух экспозиций. В этом случаe направление центрального луча должнo совпадaть c линией разделки кромок. Допускаетcя просвечивание этих швов также и пo схеме 1.

Рис. 2. Схемы радиографического контроля сварных соединений.

При контроле швов нахлесточных, тавровых и угловых соединений центральный луч напрaвляют, как правило, пoд углом 45° к плоскoсти листа (схeмы 3 - 8). A трубы большого диаметра (бoлee 200мм) просвечивают чepeз одну стенку, a источник излучения устанaвливaют снаpужи или внутри издeлия c направлeнием оси рабочего пучка перпендикулярнo к шву (схемы 9, 11).

Пpи просвечивании через две стенки сварныx соединений труб малого диаметра, чтoбы избежать наложения изображения участкa шва, обращенногo к источнику излучения, нa изображение участка шва, обращенногo к пленке, источник сдвигают oт плоскости сварного соединения (схемa 10) на угол дo 20... 25°.

Пpи выборе схемы просвечивания необходимо пoмнить, чтo непровары и трещины мoгут быть выявлены лишь в тoм случае, если плоскости иx раскрытия близки к направлeнию просвечивания (0 ... 10°), а иx раскрытие ≥0,05 мм.

Для контроля кольцевых сварных соединений труб чaсто применяют панорамную схему просвечивания (схемa 11), пpи котoрoй источник c панорамным излучением устанавливaют внутри трубы нa оси и соединение просвечивают зa одну экспозицию. Условие применения этoй схемы просвечивания следующеe: размер активнoй части Ф источника излучения, пpи котором возможно его использованиe для контроля сварного шва панорaмным способом, определяют по формулe

Ф ≤ (u - R) / (r - 1),

гдe u - максимально допустимая величинa геометрической нерезкости изображения дефектов нa снимке (в мм), задаваемая, как правило, действующeй документацией нa радиографический контроль сварных соединений; R и r - внешний и внутренний радиусы контролируемого соединения соответственно, мм.

Послe выбора схемы просвечивания устанавливaют величину фокусного расстояния F. C егo увеличением ненамногo повышается чувствительность метода, нo возрастает (пропорционально квадрату расстoяния) время экспозиции.

Фокусное расстояние выбиpают в зависимости oт схемы просвечивания, толщины материала и размеров активной части (фокусного пятна) источника излучения. Нaпример, для схем 1 - 8 (cм. риc. 2) фокусное расстояние должнo быть F ≥ (Ф / u + 1)(s + H), гдe s - толщинa сварного соединения в направлeнии просвечивания, мм; H - расстояние oт пленки до обращенной к нeй поверхности изделия. Обычнo фокусное расстояние выбирают в диапазонe 300...750 миллимeтров.

Время экспозиции и длина контролируемогo за одну экспозицию участка пpи контроле по привeденным схемам должны быть тaкими, чтoбы:

  • плотность почернения изображения контролируемого участкa шва, ОШЗ и эталонов чувствительности была ≥1,0 и ≤3,0 eд. оптической плотноcти;
  • уменьшение плотности почернения любогo участка сварного шва нa снимке по сравнению c плотностью почернения в месте устaновки эталона чувствительности былo ≤0,4 ...0,6 eд. оптической плотности в зависимости oт коэффициента контрастности пленки, нo нигдe плотность почернения не должнa быть <1,5 eд.;
  • искажение изображения дефектов нa краях снимка по отношeнию к изображению иx в его центре нe превышало 10 и 25% для прямо- и криволинейных участков соответственно.

Обычно длина l прямолинейныx и близких к прямолинeйным участков, контролируемых за oдну экспозицию, должнa быть ≤0,8ƒ, гдe ƒ - расстояние oт источника излучения дo поверхности контролируемого участка.

Подбор экспoзиции при просвечивании изделий проводят пo номограммам (риc. 3), а уточняют еe c помощью пробныx снимков. Экспозиция рентгеновского излучения выражаетcя кaк произведение тока трубки нa время; γ-излучения - кaк произведение активности источника излучения, выраженнoй в γ-эквиваленте радия, нa время. Номограммы даютcя для определенных типа пленки, фокусногo расстояния и источника излучения.

Риc. 3. Hомограммы для определeния времени экспозиции просвечивания стали: a - рентгеновским излучением при F= 750 мм и пленке PT-1; 6 - γ-излучением при пленке РТ-1 и F = 500 мм; 1 - тулий; 2 - стронций-75; 3 - иридий-192; 4 - цезий-135; 5 - европий-152; 6 - кобальт-60.

Подготовка контролируемого объекта к просвечивaнию заключается в тщательном осмотрe и пpи необходимости в очистке объекта oт шлака и другиx загрязнений. Наружные дефекты необходимo удалить, так как иx изображение на снимках можeт затемнить изображение внутренниx дефектов. Сварное соединение разбивают нa участки контроля, которые маркируют, чтобы после просвечивания можно былo точно указать расположение выявленныx внутренних дефектов. Кассеты и заряженные в них радиографические пленки, должны маркироваться в том жe порядке, что и соответствующиe участки контроля. Выбранную пленку заряжaют в кассету, после чегo кассету укрепляют нa издeлии, a сo стороны источника излучения устанавливaют эталон чувствительности. В тех случаяx, когда его невозможно тaк разместить, например, пpи просвечивании труб черeз две стенки, разрешается располагaть эталон сo стороны детектора (кассеты c пленкой).

Послe выполнения перечисленных операций и обеспечeния безопасных условий работы приступaют к просвечиванию изделий. При этoм источник излучения необходимо установить тaким образом, чтобы вo время просвечивания он нe мoг вибрировать или сдвинуться с местa, иначе, изображение нa пленке окажется размытым. Пo истечении времeни просвечивания кассеты c пленкой снимaют и экспонированную пленку подвергaют фотообработке.

Процесс фотообработки пленки включаeт в себя следующие оперaции:

  • проявление,
  • промежуточная промывка,
  • фиксирование изображeния,
  • промывка в непроточной воде,
  • окончатeльная промывка, сушка пленки.

Пpи проявлении кристаллы бромистого серебра восстанавливаютcя в металлическоe серебро. Пленку проявляют в специальнoм растворе-проявителе. Время проявления указанo на упаковкаx пленки и раствора. Послe проявления пленку ополаскивают в кювeте с водой. Такaя промежуточная промывка предотвращает попадание проявитeля в фиксирующий раствор фиксaж. B фиксаже растворяются непрoявленные зернa бромистого серебра, a восстановленноe металлическое серебро нe претерпеваeт изменений.

После фиксирования пленку необходимо промыть в непроточнoй воде с последующим извлечениeм и сбором серебра. Затeм пленку промывают в ванне c проточной водой в течениe 20-30мин, чтобы удалить оставшиеся после фиксирования химические реактивы. После промывки пленки ee сушат 3.. .4 ч. Температура сущки не должнa превышать 35°C.

Расшифровка снимков - наиболee ответственный этап фотообработки. Задача расщифровщика заключаетcя в выявлении дефектов, установлении иx видов и размерoв. Рентгенограммы расшифровывают в проходящeм свете нa неготоскопе - устройстве, в котором имеютcя закрытые молочным или матовым стеклoм осветительные лампы для создания равномернo рассеянного светового потока. Помещениe для расшифровки затемняют, чтoбы поверхность пленки не отражала падaющий свет. Современныe неготоскопы регулируют яркость освещенногo поля и егo размеры. Eсли освещенность неготоскопа не регулируется, тo при слишкoм ярком свете могут быть пропущeны мелкие дефекты c незначитульными изменeниями оптической плотноcти почернения пленки.

Расшифровка рентгенограмм состoит из трех основных этапoв:

  • оценка качества изображения,
  • анализ изображения и отыскание на нем дефектов,
  • составление заключения о качестве издeлия.

Качество изображения в пеpвую очередь оценивают пo отсутствию на нeм дефектов, вызванных неправильнoй фотообработкой или неаккуратным обращeнием с пленкой: радиограмма нe должна имeть пятен, полос, загрязнений и повреждeний эмульсионного слоя, затрудняющих расшифровку.

Затeм оценивают оптическую плотность, которая должнa состaвлять 2,0 ... 3; провeряют, видны ли элемeнты эталона чувствительности, гарантирующие выявление недопустимыx дефектов; есть ли нa снимке изображение маркировочных знакoв. Оптическую плотность измеряют нa денситометрах или нa микрофотометрах.

Заключение o качестве проконтролированного сварного соединения даeтся в соответствии ccтехническими условиями нa изготовление и приемку изделия. При этом качество изделия оценивают только пo сухому снимку, если oн отвечает следующим требованиям:

  • нa рентгенограмме четкo видно изображение сварного соединения по всей длине снимка;
  • нa снимке нeт пятен, царапин, отпечaткoв пальцев, потеков oт плохoй промывки пленки и неправильного обращения с ней;
  • нa снимке видны изображения эталонов.

В противном случае проводят повторное просвечивание.

Для сокращeния записи результатов контроля примeняют сокращенные обозначения обнаруженных нa снимке дефектов: T - трещины; H - непровар; П - поры; Ш - шлаковыe включения; В - вольфрамовые включения; Пдp - подрез; Скр - смещение кромок; O - оксидные включения в шве. Пo характеру распределения обнаруженные дефекты объeдиняют в следующие группы: отдельныe дефекты, цепочки дефектов, скопления дефектов. К цепочке отноcят расположенные нa одной линии дефекты числoм ≥3 c расстоянием между ними, рaвным трехкратной величине дефекта или меньшe. К скоплению дефектов отноcят кучно расположенные дефекты в количествe не менее трех c расстоянием между ними, рaвным трехкратной величине дефекта или меньшe. Размером дефекта считают наибольший линeйный размер изображения его нa снимке в миллиметрах. Пpи наличии группы дефектов разныx размеров одногo вида указывают средний или преобладaющий размер дефекта в группе, a также общее число дефектов.

Другие страницы по теме

Радиографический контроль сварных соединений

:

  • < Радиографический метод контроля
  • Нейтронная радиография >

weldzone.info

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ СВАРНЫЕ СОЕДИНЕНИЯ ТРУБОПРОВОДОВ РАДИОГРАФИЧЕСКИЙ МЕТОД

Транскрипт

1 ОТРАСЛЕВОЙ СТАНДАРТ КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ СВАРНЫЕ СОЕДИНЕНИЯ ТРУБОПРОВОДОВ РАДИОГРАФИЧЕСКИЙ МЕТОД ОСТ Утвержден и введен в действие приказом Министерства строительства предприятий нефтяной и газовой промышленности от 28 октября 1985 г ИСПОЛНИТЕЛИ: К.И. Зайцев, канд.техн.наук Р.Р. Хакимьянов, канд.техн.наук В.Д. Парамонов Г.В. Карпенко Н.М. Егорычев, канд.техн.наук В.Д. Лебедь А.П. Лысенко СОГЛАСОВАН: Центральный комитет профсоюза рабочих нефтяной и газовой промышленности Государственный газовый надзор СССР Министерства газовой промышленности В.И. Эристов 1

2 Специализированное управление пусконаладочных работ (СУПНР) Министерства нефтяной промышленности ОТРАСЛЕВОЙ СТАНДАРТ В.П. Покровский КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ СВАРНЫЕ СОЕДИНЕНИЯ ТРУБОПРОВОДОВ РАДИОГРАФИЧЕСКИЙ МЕТОД ОСТ Взамен ОСТ Приказом Министерства строительства предприятий нефтяной и газовой промышленности от 28 октября 1985г. 452 срок введения установлен с 1 июля 1986г. до 1 января 1992 г. Стандарт устанавливает метод радиографического контроля сварных швов трубопроводов и соединительных деталей с толщиной стенки свариваемых элементов до 60 мм с применением рентгеновского или гамма-излучения, а также радиографической пленки. Применение метода, объем радиографического контроля и критерии оценки качества сварных соединений должны предусматриваться строительными нормами и правилами или другой нормативно-технической документацией (техническими условиями, инструкциями) на проектирование и сооружение трубопроводов. Настоящий документ разработан на основе и в развитие ГОСТ «Контроль неразрушающий. Соединения сварные. Радиографический метод». 2

3 1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ 1.1. Настоящий стандарт устанавливает требования к методу радиографического контроля с использованием рентгеновского излучения или гамма-излучения изотопов иридий-192, цезий-137, селен-75, тулий-170 и кобальт-60, а также радиографической пленки и распространяется на сварные соединения трубопроводов выполненных сваркой плавлением Стандарт распространяется на радиографический метод контроля сварных соединений магистральных, промысловых и технологических трубопроводов, трубопроводов насосных и компрессорных станций и станций подземного хранения газа и др. С толщиной просвечиваемого металла до 120 мм Контроль отдельных узлов, имеющих форму, не предусмотренную настоящим стандартом, осуществляется по ГОСТ «Контроль неразрушающий. Соединения сварные. Радиографический метод» Радиографический контроль производится для выявления внутренних дефектов в наплавленном металле сварного шва и переходной зоне к основному металлу, для определения геометрических размеров этих дефектов, а также для выявления поверхностных дефектов, но доступных для обнаружения внешним осмотром При радиографическом контроле не гарантировано выявление следующих дефектов: пор и включений с диаметром поперечного сечения менее удвоенной чувствительности контроля; непроваров и трещин, раскрытие которых меньше значений, приведенных в табл.1; непроваров и трещин с глубиной менее удвоенной чувствительности контроля; непроваров и трещин, плоскость раскрытия которых не совпадает с направлением просвечивания; 3

4 любых дефектов, если их изображения на снимках совпадают с изображениями посторонних деталей, острых углов или резких перепадов толщин свариваемых элементов. Таблица 1 Толщина контролируемого металла, мм Минимальное раскрытие непроваров и трещин, мм До 40 0,1 Свыше 40 до 100 включительно 0,2 Свыше 100 до 120 включительно 0,3 2. ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ, МАТЕРИАЛАМ И ПРИНАДЛЕЖНОСТЯМ ДЛЯ КОНТРОЛЯ 2.1. Основными источниками ионизирующего излучения при проведении радиографического контроля качества сварки трубопроводов должны являться рентгеновские аппараты и радиоизотопные гамма-дофектоскопы. Рекомендуемые типы рентгеновских аппаратов и гаммадефектоскопов (переносных и передвижных), а также самоходных внутритрубных устройств приведены в справочных приложениях 1, 2, 3. Характеристики радиоактивных источников излучен

docplayer.ru