Технология изготовления сварных труб с двумя продольными швами. Сварка продольного шва трубы


Способ ремонта продольного шва трубы, нанесенного методом лазерной сварки

Изобретение относится способу ремонта трубы с продольном швом. Ремонт включает обнаружение дефекта, выборку дефекта и заплавление выборки. Оборудование для обнаружения, выборки дефекта и заплавления выборки устанавливают с возможностью работы через блок управления в единой системе координат. При этом для обнаружения дефекта осуществляют ультразвуковой контроль путем сканирования вдоль линии шва с использованием ультразвуковых преобразователей до обнаружения дефекта, при котором строят координатную модель дефекта, данные которой используют для задачи параметров выборки, которые вводят в блок управления, осуществляющий на стадии выборки дефекта позиционирование фрезерной головки, а на стадии заплавления выборки - позиционирование оптической лазерной головки, осуществляющей очистку зоны выборки, и позиционирование оборудования наплавки. Изобретение обеспечивает точное наведение ремонтного оборудования на зону дефекта шва трубы, нанесенного методом лазерной сварки, позволяет устранить любой дефект лазерного шва с минимальным объемом выборки, максимальным сохранением геометрии шва и минимизирует тепловложение в ремонтный участок сварного шва. 11 ил.

 

Изобретение относится к ремонту швов труб, в частности к ремонту узких сварных швов, нанесенных методом лазерной или гибридной лазерно-дуговой сварки.

Применение технологий сварки высококонцентрированными источниками тепла позволяет получить сварные соединения большой толщины за один проход, при этом с высокими механическими и эксплуатационными характеристиками. Главной проблемой этих технологий сварки является высокие требования к точности подготовки кромок и наведению на стык кромок, поскольку ширина сварных швов не превышает, как правило, 2 мм и любые неточности в позиционировании деталей или сварочной головки могут привести к образованию такого дефекта как несплавление, когда высококонцентрированный источник тепла оплавляет только одну кромку, а вторая остается нетронутой. Другим характерным дефектом является газовая полость, которая располагается точно по центру сварного шва, но может быть на различной глубине, а также иметь циклический характер и различную форму. Причин возникновения этого дефекта может быть несколько: нестабильность режимов сварки, химический состав основного металла и связанные с ним особенности кристаллизации, плохая газовая защита сварного соединения.

В связи со спецификой протекания процесса и сварки длинномерных швов, к примеру продольных швов сварных труб большого диаметра, возникает вопрос о том, каким образом производить ремонт таких дефектов.

Известен способ ремонта сварного шва труб, при котором осуществляют обнаружение дефекта, выборку дефекта и заплавление выборки («Временная инструкция по технологиям ремонта сваркой дефектов труб и сварных соединений газопроводов», утвержденная ПАО «Газпром», 2005 г.). В известном способе ремонт залегающих внутри шва дефектов происходит путем выборки дефектного участка шлифовальным кругом с последующей заваркой многопроходной сваркой в защитных газах или плавящимся электродом.

Недостатком этого способа является то, что объем выборки металла зачастую больше объема дефекта шва. Также ремонт дуговой сваркой связан с большим тепловложением, которое добавляет к остаточным напряжениям после сварки шва еще и напряжения после ремонта. Кроме того, эта методика неприменима для технологий сварки высококонцентрированными источниками тепла, которым является лазерный луч, поскольку ширина сварного шва и зона термического влияния очень малы, и ремонтный шов, выполненный по предлагаемой технологии, будет намного шире основного шва и будет являться не меньшим концентратором напряжений, чем сам дефект. Недостатком технологии ремонта узкого шва методом дуговой сварки является то, что в глубокой узкой выборке дуга будет гореть не стабильно и перемещаться между стенками и дном, в результате не производя равномерное заполнение объема выборки с высокой вероятностью оставления дефектов.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа для ремонта дефектов сварных швов, выполненных с использованием технологий лазерной или гибридной лазерно-дуговой сварки.

Техническим результатом является обеспечение точности наведения ремонтного оборудования на зону дефекта шва трубы, нанесенного методом лазерной или гибридной лазерно-дуговой сварки, максимальное сохранение в зоне ремонта геометрии шва, минимизация тепловложений в ремонтный участок лазерного шва.

Технический результат достигается тем, что в способе ремонта продольного шва трубы, при котором осуществляют обнаружение дефекта, выборку дефекта и заплавление выборки, согласно изобретению оборудование для обнаружения, выборки дефекта и заплавления выборки устанавливают с возможностью работы через блок управления в единой системе координат, при этом для обнаружения дефекта осуществляют ультразвуковой контроль путем сканирования вдоль линии шва с использованием ультразвуковых преобразователей до обнаружения дефекта, при котором строят координатную модель дефекта, данные которой используют для задачи параметров выборки, которые вводят в блок управления, осуществляющий на стадии выборки дефекта позиционирование фрезерной головки, а на стадии заплавления выборки - позиционирование оптической лазерной головки, осуществляющей очистку зоны выборки, и позиционирование оборудования наплавки.

Заявляемое изобретение поясняется чертежами.

На фиг. 1 изображен участок ремонта шва трубы, вид сбоку.

На фиг. 2 - то же, вид сверху.

На фиг. 3 изображена операция ультразвукового контроля, вид сверху.

На фиг. 4 - то же, разрез А-А на фиг. 3.

На фиг. 5 - то же, разрез Б-Б на фиг. 4.

На фиг. 6 изображена операция выборки дефекта фрезерной головкой.

На фиг. 7 - то же, разрез А-А на фиг. 6.

На фиг. 8 изображена операция заплавления выборки (короткая выборка), переплавление первого слоя порошка.

На фиг. 9 - то же, вид А-А на фиг. 8.

На фиг. 10 - то же, полностью заплавленная выборка.

На фиг. 11 - то же, вид Б-Б на фиг. 10.

Заявляемый способ осуществляют следующим образом.

Труба 1 после наложения всех рабочих швов, проходит предварительный ультразвуковой контроль, при котором осуществляют выявление и пометку краской дефектного участка/участков. Далее осуществляют расшифровку отмеченного участка при помощи рентгенотехнологического контроля и подтверждение необходимости проведения ремонта. Ремонтный участок содержит передвижной пост управления 2 с блоком управления, транспортный рольганг 3, подъемно-поворотные ролики 4 с сервоприводами, транспортную тележку 5, перемещающуюся по рельсовому пути 6, на которой установлены три робота: высокоточный шестикоординатный робот 7 с прибором ультразвукового контроля TOFD, высокоточный шестикоординатный робот 8 с фрезерной головкой 9, высокоточный шестикоординатный робот 10 с оптической головкой и оборудованием наплавки и подачи проволоки, а также лазер 11, система охлаждения 12 лазера 11 и оптической головки. Роботы 7, 8, 10 и транспортная тележка 5 осуществляют работу через блок управления в единой системе координат. Также ремонтный участок содержит шланг 13 подачи сжатого воздуха с пульверизатором, рельсы 14 поста управления 2, а также дополнительно бункер для металлического порошка под наплавку, кабели питания, управления, шланги подвода воды, смазывающей охлаждающей жидкости и сжатого воздуха.

Оператор с поста управления 2 подает на ремонтный участок трубу 1 по транспортному рольгангу 3. Затем с помощью подъемно-поворотных роликов 4 трубу 1 поднимают выше рольганга 3 и ориентируют швом 15 на «12 часов». Оператор перемещает транспортную тележку 5 по рельсам 6 и, при необходимости, пост управления 2 по рельсам 14 к отмеченному для ремонта участку продольного шва 15 трубы 1. Корректируют положение транспортной тележки 5 таким образом, чтобы робот 7 смог осуществить позиционирование оборудования ультразвукового контроля и захватить весь отмеченный для ремонта участок шва 15. Оператор с поста управления 2 переводит блок управления в режим обнаружения дефекта 16, при котором осуществляют ультразвуковой контроль по ультразвуковому дифракционно-временному методу TOFD (Time of Flight Diffraction) путем сканирования вдоль линии шва 15 с использованием ультразвуковых преобразователей 17 в режиме импульсный генератор-приемник. Перемещение оборудования ультразвукового контроля происходит посредством транспортной тележки 5 и робота 7. В результате ультразвукового контроля по методу TOFD происходит определение геометрии дефекта 16, места и глубины его залегания. Результаты контроля преобразуются в координатный вид и отображаются на мониторе поста управления 2 в виде координатной модели дефекта.

Оператор переводит блок управления 2 в режим выборки дефекта. Координатную модель дефекта используют для задачи параметров выборки дефекта, поскольку роботы 7, 8, 10 и дефект 16 находятся в единой системе координат. Оператор выставляет параметры выборки дефекта 16 (длина вдоль шва, глубина), вводит их в блок управления, который автоматически переводит транспортную тележку 5 вдоль трубы 1 с фиксацией положения робота 8 напротив выборки и позиционирует фрезерную головку 9 в точке начала фрезеровки. Включается операция фрезеровки (выборки дефекта). Фрезерная головка 9 с малоразмерной концевой фрезой диаметром 2-3 мм производит многопроходную операцию по выборке дефекта 16 по параметрам, определенным оператором на основании координатной модели дефекта. В процессе фрезеровки рабочий инструмент охлаждается путем подачи смазывающей охлаждающей жидкости, кроме того, между проходами оператор, при необходимости, осуществляет очистку фрезы и выборки от стружки с помощью щеток, щупов и пульверизатора 13 со сжатым воздухом.

Далее оператор переводит блок управления 2 в режим заплавления выборки. Используя заданные параметры выборки, блок управления автоматически переводит транспортную тележку 5 с фиксацией положения робота 10 напротив выборки и позиционирует оптическую лазерную головку в начальной точке операции. Включается очистка зоны выборки. Лазерное излучение генерируется лазером 11 и подается в оптическую головку, в которой фокусируется в пятно необходимого диаметра. Очистка происходит путем перемещения робота 10 с оптической лазерной головкой транспортной тележкой 5 таким образом, чтобы расфокусированный лазерный луч прошел вдоль кромок выборки и вглубь до дна выборки. Система охлаждения 12 производит охлаждение элементов оптической лазерной головки и лазера. После очистки выборки включается процесс наплавления, при котором блок управления автоматически осуществляет позиционирование оборудования наплавки. При этом, в зависимости от размеров выборки выполняется один из двух вариантов наплавки: короткая выборка - лазерная наплавка с присадочным металлом в виде порошка, длинная выборка - лазерная наплавка с присадочным металлом в виде проволоки.

Присадочный материал для наплавки выбирают исходя из требований к химическому составу и механическим характеристикам сварного соединения.

При короткой выборке происходит засыпка оператором металлического порошка, его утрамбовка в равномерный слой и последующее переплавление его и небольшого объема основного металла расфокусированным лазерным излучением. После этого осуществляется проход лазера вдоль наплавленного слоя в режиме очистки для удаления оксидных пленок и подготовки поверхности под наплавку. Эти две операции повторяются многократно до полного заплавления выборки.

Заполнение длинной выборки (более 50 мм) происходит в автоматическом режиме с использованием, как минимум, одной присадочной проволоки с помощью подающего привода. После наплавки одного слоя выполняется проход для очистки выборки. Операции выполняются до полного заполнения выборки.

После выполнения операций наплавки оператор переводит блок управления 2 в режим ультразвукового контроля по методу TOFD. Роботом 7 выполняют ультразвуковой контроль отремонтированного участка для подтверждения качества ремонта. Если ремонт осуществлен качественно и дефектов после него не обнаружено, то трубу передают на следующие участки производства. Если найден недопустимый дефект после ремонта, производят повторный ремонт (если допускает технология производства).

Заявляемый способ обеспечивает точное наведение ремонтного оборудования на зону дефекта шва трубы, нанесенного методом лазерной сварки, позволяет устранить любой дефект лазерного шва с минимальным объемом выборки, максимальным сохранением геометрии шва и минимизирует тепловложение в ремонтный участок сварного шва.

Способ ремонта трубы с продольным швом, включающий обнаружение дефекта сварного шва, выборку дефекта и заплавление выборки, отличающийся тем, что обнаружение дефекта сварного шва осуществляют путем сканирования вдоль линии продольного шва с использованием ультразвукового оборудования, которое перемещают вдоль линии шва, затем полученные данные ультразвукового контроля преобразуют в координатный вид и строят координатную модель дефекта в блоке управления с отображением на мониторе, причем полученные данные координатной модели используют для задачи параметров выборки дефекта для ее заплавления, при этом выборку дефекта осуществляют фрезерной головкой, а заплавление выборки - оптической лазерной головкой, при этом используют ультразвуковое оборудование для обнаружения дефекта, фрезерную головку и оптическую лазерную головку, связанные с блоком управления с возможностью работы в единой системе координат, причем на стадии выборки дефекта осуществляют позиционирование фрезерной головки, а на стадии заплавления выборки позиционируют оптическую лазерную головку относительно выборки, осуществляют очистку зоны выборки под наплавку и наплавку с использованием присадочного материала.

www.findpatent.ru

Продольный сварной шов - Большая Энциклопедия Нефти и Газа, статья, страница 2

Продольный сварной шов

Cтраница 2

При гнутье труб продольный сварной шов должен располагаться по нейтральной линии. Холодное гнутье сварного кольцевого шва не разрешается. Расстояние от зоны изгиба до кольцевого шва должно быть не менее 200 - 250 мм.  [16]

Коэффициент прочности р продольного сварного шва принимается в зависимости от состава свариваемых сталей таким же образом, как и при расчете на прочность камер и барабанов. Коэффициент прочности поперечных сварных швов в расчете на внутреннее давление не учитывается.  [17]

Аналогично провести контроль левого участка продольного сварного шва.  [19]

При распространении трещины по ЗТВ вблизи продольного сварного шва ( см. рис. 5.33, в, образец № 8) скорость ее значительно, примерно в 2 раза, снижается по сравнению с более удаленным участком ЗТВ ( образец № 7) и до 1 6 раза по сравнению с биметаллом, что объясняется характером распределения остаточных напряжений для этого участка на стыке сварных швов.  [21]

На рис. 126 представлено разрушение заводского продольного сварного шва отвода трубопровода 0720x22 мм, соединяющего УКПГ-9 с ОГПЗ. Отвод длиной 50 м, сооруженный из труб фирмы УаПигес ( материал труб - низкоуглеродистая сталь типа стали 20), был отключен от газопровода, по которому под давлением 5 5 МПа транспортировался сероводород-содержащий газ.  [22]

На рис. 126 представлено разрушение заводского продольного сварного шва отвода трубопровода 0720x22 мм, соединяющего УКПГ-9 с ОГПЗ. Отвод длиной 50 м, сооруженный из труб фирмы Vallurec ( материал труб - низкоуглеродистая сталь типа стали 20), был отключен от газопровода, по которому под давлением 5 5 МПа транспортировался сероводород-содержащий газ.  [23]

На рис. 2.2, б представлено разрушение заводского продольного сварного шва отвода 0 720x22 мм трубопровода, соединяющего УКПГ-9 с ОГПЗ. Отвод длиной 50 м, сооруженный из труб металла типа сталь 20 поставки фирмы Валу-рек, был отключен с помощью крана от газопровода, по которому транспортировался сероводородсодержащий газ с давлением 5 5 МПа.  [24]

Для цилиндрической части сосудов опасным является осевое сечение и продольный сварной шов, выполняемый, как правило, стыковым.  [25]

Исходная цилиндрическая заготовка ( обечайка) для гидроформовки обычно имеет один продольный сварной шов. Для выполнения продольного шва применяют автоматическую аргоно-дуговую сварку с использованием неплавящегося ( вольфрамового) электрода и присадочной проволоки из стали той же марки; что и сталь обечайки. Эта операция производится на стенде, где свариваемый стык плотно прижимается к медной подкладке, находящейся внутри обечайки. При этом образуется гладкий и ровный по ширине шов с допустимым усилием в пределах 0 4 мм.  [26]

При гнутье труб с продольно-сварным швом на станке допускается любое расположение продольного сварного шва, так как при гнутье его деформации не превосходят допустимых.  [27]

На втором этапе работы получены сварные соединения пластин длиной 1000 мм и продольный сварной шов обечайки длиной 850 мм и диаметром 520 мм, обладающие высокой коррозионной стойкостью. В случае приварки днища к обечайке и штуцера к корпусу аппарата положительных результатов не достигнуто.  [28]

По предложенной методике определен коэффициент интенсивностей напряжений возле трещины, находящейся в области продольного сварного шва, соединяющего две половинки пластины размером 160 X 180 X 2 мм. Сварной шов имитировался вклейкой ребра жесткости с размерами 3 6 X 3 6 X 140 мм, изготовленного из того же материала, что и пластина.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Технология изготовления сварных труб с двумя продольными швами

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА СВАРНЫХ КОНСТРУКЦИЙ

Трубы с двумя продольными швами собирают из двух предварительно отформованных корыт, подаваемых укладчиком па две параллельные нитки входных рольгангов сборочного устройства. Кромки заготовок выравнивающим приспособлением устанавливаются в одной горизонтальной плоскости, и в таком положении корыта рольгангами подаются в раскрытое сборочное устройство (рис. 54, а). Штоки пневмоцилиндров 1 (рис. 54, б), поворачивая рычаги 2, устанавливают заготовки в исходное для подачи в сварочный стан положение. Зазор между заготовками задается деталями 3 и 4. Подача собранной трубы в сварочный стан осуществляется упором 6 цепного заталкивателя 5 со скоростью, несколько превышающей скорость сварки, чтобы догнать предыдущую трубу (рис. 54, в), При этом направляющий нож стана попадает в зазор между кромками корыт, направляя стык к сварочной головке. Когда труба захватывается горизонтальными приводными валками сварочного стана, цепной заталкиватель выключается, и возвращается в исходное положение. Сваренная первым наружным швом заготовка поворачивается разъемом вверх и по рольгангу поступает на стан для сварки второго наружного шва. Затем последовательно, аналогично одношовным трубам, выполняются и оба внутренних шва. После контроля и устранения дефектов трубы с прямым швом подвергают правке для обеспечения требуемой формы поперечного сечения и допуска на диаметр. Для этого на длине 300 мм снимают внутреннее усиление шва и осуществляют раздачу в пресс - расширителе (эспандере). Для этого трубу 1 заключают в толстостенную матрицу 2, в которую вводят конусные заглушки 3, уплотняющие и калибрующие ее концы (рис. 55). Внутренним гидравлическим давлением диаметр трубы увеличивается на 1,0... 1,2%, чем достигается правка трубы по всей длине и калибровка ее по диаметру. Затем давление снижают до испытательного

уровня и дают выдержку около 30 с одновременным разовым обстукиванием трубы молотками, закрепленными на траверсе.

Рис. 54. Устройство для сборки труб из двух корыт

Технология изготовления 12-метровых прямошовных труб диаметром

1220.. .1620 мм отличается последовательностью выполнения швов, приемами формовки и калибровки труб, а также организацией контроля качества.

Формовка полуцилиндрических заготовок происходит в роликах семиклетьевого стана, откуда они попарно поступают на сборку и прихватку технологическими швами, выполняемыми либо токами высокой частоты, либо в среде СО2 в одном из двух агрегатов, установленных параллельно друг другу.

После визуального контроля технологических швов и приварки технологических планок трубы поступают на сварку внутренних рабочих швов. Сварку осуществляют трехдуговым аппаратом А-1448, слежение за направлением электродов по стыку производится автоматически или визуально путем совмещения вертикальной линии «креста» на экране телевизора с риской на внутренней поверхности трубы. Станы для выполнения наружных рабочих швов отличаются только расположением сварочного аппарата; за положением электродов относительно стыка сварщик следит с помощью светоуказателя.

Рис. 55. Эспандирование труб на прессрасширителе

Все предварительно охлажденные водой трубы проходят ультразвуковой контроль наружных и внутренних рабочих швов с отметкой дефектных мест краской. При наличии таких отметок труба направляется на рентгено-телевизионную установку для расшифровки. Калибровку осуществляют гидромеханическим эспандером (рис. 56). Для этого трубу шагами надвигают на калибровочную головку эспандера, обеспечивая

механическую раздачу каждого участка трубы до заданного диаметра.

69

Откалиброванные трубы проходят гидроиспытание внутренним давлением, а затем контролируются повторно ультразвуком с целью выявления дефектов, появившихся в процессе калибровки и гидроиспытаний.

А-А

(#%)

Рис. 56 Гидромеханическое эспандрование

Дизайнерские конструкции из стекла и алюминия от «ГлассГрупп»

С помощью стекла и алюминия можно создавать не только эффектные экстерьеры зданий, но и формировать элегантные пространственные решения внутри помещений. Предложения компании Фирма «ГлассГрупп» предлагает реализовать под ключ различные архитектурные …

Технология изготовления рамы тележек железнодорожного подвижного состава

В рамах тележек железнодорожного подвижного состава нередко наиболее сложные элементы выполняют в виде стальной отливки с относительно тонкими стенками. Примером этому может служить рама тележки электровоза ВЛ-80 (рис. 51), состоящая …

Технология изготовления рамы клетей прокатных станов

В тяжелом машиностроении рамы клетей мощных прокатных станов собирают и сваривают из балочных заготовок в виде массивных стальных отливок. На рис. 51 показана рама вертикальной клети прокатного стана, составленная из …

msd.com.ua