SVARKA-INFO.COM - виртуальный справочник сварщика. Водородная сварка


особенности и все нюансы процедуры

Технологический процесс водородной сварки представляет собой газосварку по принципу электромеханического разложения воды на два компонента: водород и кислород. Это особая технология и своими характеристиками принципиально отличается от других способов газосварки. Например, атомно водородная сварка, которая производится с принудительным добавлением водорода.

Область применения

Такая газосварка, своими уникальными свойствами, завоевала широкое применение для специальных легированных сталей и алюминиевых сплавов. Эта водородная газосварка экономически выгодна при сваривании конструкций и изделий толщиной до 5 миллиметров.

Атомно водородная сварка

Широкое применение такая технология нашла в:

  • Авиастроении.
  • Медицинской сфере.
  • Химической промышленности.
  • Ракетно-космическом производстве.
  • Металлургической отрасли.

Во время выполнения этого водородно кислородного типа сварки происходит медленный и равномерный нагрев металла. Такой способ нагрева материала необходим при работе с:

  1. Низкоуглеродистыми и легированными сталями, толщиной до 5 миллиметров.
  2. Цветными металлами.
  3. Инструментальными сталями, для которых необходим медленный нагрев и охлаждение.
  4. Наплавочными работами при наплавке резцов.
  5. Чугуном и специальными аналогичными сталями, которые медленно остывают в среде угля и нагреваются равномерно по всей свариваемой поверхности. Своими технологическими режимами, такая газосварка предотвращает появления трещин в сварном шве.
  6. Ювелирном производстве.
  7. Изготовлении стоматологического инструмента.
  8. При изготовлении металлических оправ
  9. Запайке медицинских ампул с лекарствами.

Технологический процесс

Технологический процесс такой сварки основан на принципе подачи водородной смеси в сварочную зону. Сварочная горелка – это тот инструмент, который определяет направления, и количество этой смеси. Во время выполнения водородно кислородной технологии сварки, из-за больших температур, горелка по краям оплавляется. Ее необходимо своими руками очищать. Этот процесс газосварки может выполняться в ручном и автоматическом режимах.

Люди с опытом проведения сварочных работ могут выполнять такие работы самостоятельно своими руками. Достаточно приобрести простейший сварочный аппарат эффект 210, в комплекте поставляется дополнительная горелка. Такой аппарат работает от напряжения электросети 220 в. Им хорошо достигается эффект порезки тонких металлических пластин из любых легированных сталей, с последующим соединением любых изделий. Самодельная доработка для использования газовых баллонов с другими газами, этот сварочный аппарат можно использовать для выполнения технологии, которая называется — атомно водородная сварка.

Эффективно процесс сваривания в водородной среде используется на станциях технического обслуживания и ремонта автомобилей.

сварка автомобилей

Горелка с правильно подобранным диаметром в соответствии с толщиной свариваемых деталей, обеспечивает высокий эффект продуктивного сваривания.

Похожие статьи

goodsvarka.ru

Атомно водородная сварка

Атомно-водородная сварка

Атомно-водородная сварка. Плавление металла происходит за счет тепла, выделяемого при превращении атомарного водорода в молекулярный водород, и за счет тепла независимой дуги, горящей между двумя вольфрамовыми электродами.

1 - электроды; 2 - мундштуки горелки; 3 - зона превращения атомарного водорода в молекулярный; 4 - молекулярный водород, поступающий из мундштуков; 5 - зона диссоциации водорода на атомарный

Схема процесса атомно-водородной сварки

Атомно-водородная сварка была изобретена в 1925 г. американцем Лангмюром.

Во время нагревания водорода при соприкосновении его с раскаленной вольфрамовой нитью лампочки, как это имело место в первых исследованиях Лангмюра, происходит диссоциация молекул водорода на атомы.

Особенно интенсивную диссоциацию (61-62% всего нагретого водорода) Лангмюру удалось получить в вольтовой дуге, образованной в атмосфере водорода между двумя вольфрамовыми электродами. Атомное состояние водорода неустойчивое, оно длится доли секунды. Воссоединение атомов в молекулы сопровождается выделением тепла, которое было поглощено при диссоциации.>

Тепловой эффект от излучения дуги и от сгорания молекулярного водорода в наружной зоне пламени незначителен по сравнению с эффектом рекомбинации атомов водорода.

Температура атомно-водородного пламени составляет ~ 3700° С, что по концентрации тепла приближает этот способ сварки к сварке в среде защитных газов. Водород при этом способе сварки передает тепло от дуги к изделию вначале за счет поглощения его при реакции диссоциации, а затем путем выделения при рекомбинации атомов водорода. Высокая активность водорода обеспечивает хорошую защиту металла шва от вредного воздействия кислорода и азота воздуха.

При атомно-водородной сварке дуга горит между двумя вольфрамовыми электродами, расположенными под углом. В зону дуги можно подавать чистый водород или азотно-водородные смеси, получаемые при диссоциации аммиака. Питание дуги осуществляется от источников переменного тока. Из-за высокого охлаждающего действия реакции диссоциации водорода и высокого потенциала ионизации водорода напряжение источника питания дуги, требуемое для ее зажигания, должно быть 250-300 В. Напряжение горения дуги 60-120 В. Сила тока дуги 10-80 А.

Широкий диапазон изменения напряжения горения дуги мало сказывается на величине изменения силы тока. Напряжение горения дуги зависит от расхода водорода и расстояния между вольфрамовыми электродами.

Зажигание дуги осуществляется коротким замыканием вольфрамовых электродов, обдуваемых водородом, или, лучше, замыканием электродов на угольную (или графитовую) пластинку при обдувании струей газа, так как в этом случае обеспечивается легкое зажигание дуги и не требуется повышенного напряжения холостого хода источника питания. После зажигания дуги расстояние от концов электродов до поверхности изделия устанавливают в пределах 4-10 мм. Это зависит от мощности атомно-водородного пламени и толщины свариваемого металла.

а - спокойной; б - звенящей

Формы дуги

Дуга может быть спокойной (рис. а), когда нет в дуге характерного веера, и звенящей (рис. б), когда веер пламени касается поверхности свариваемого изделия и дуга издает резкий звук. Для спокойной дуги напряжение не превышает 20-50 В и расход водорода 500-800 л/ч, для звенящей дуги - 60-120 В и 900-1800 л/ч соответственно.

При атомно-водородной сварке выполняют следующие виды сварных соединений: стыковые с отбортовкой и без отбортовки кромок, угловые, тавровые и нахлесточные.

Высоту отбортовки принимают равной двойной толщине свариваемого листа. Угловые соединения выполняют с применением присадочной проволоки или без нее. При сварке толщин более 3 мм на стыковых и тавровых соединениях рекомендуется выполнять скос кромок под углом ≥45°.

Обычно атомно-водородную сварку рекомендуется применять для сварки металлов и сплавов толщиной 0,5-5-10 мм. Этим способом хорошо свариваются малоуглеродистая и легированная сталь, чугун, алюминиевые, магниевые сплавы. Хуже свариваются медь, латунь из-за склонности к насыщению водородом и испарению цинка. При сварке алюминия и сплавов на его основе необходимо применить флюсы, состоящие из солей щелочных металлов. Металлы с высокой химической активностью к водороду, например Ti, Zr, Та и др., нецелесообразно сваривать атомно-водородной сваркой.

Атомно-водородная сварка обеспечивает получение сварных соединений со свойствами, близкими к свойствам основного металла.

Техника выполнения швов при атомно-водородной сварке подобна технике газовой сварки, т. е. может быть осуществлена как правым, так и левым методами.

Атомно-водородную сварку можно осуществлять в нижнем и вертикальном положениях, по режимам приведенным в таблице

Режимы (ориентировочные) атомно-водородной сварки

Толщина листа, мм Диаметр электрода, мм Сила тока, А Средний расход водорода, л/ч Рабочее давление водорода, кгс/см2
до 1 2 30 1200 0,055
до 3   40 1400 0,064
до 5 3 50 1500 0,068
до 6-8   60 1600 0,073
до 8-10 4 70 1750 0,080
св. 10   80 1850 0,085

Установка для атомно-водородной сварки состоит из атомно-водородного аппарата, баллона с водородом, водородного редуктора, горелки и пускорегулирующей аппаратуры.

1 - атомно-водородный аппарат; 2 - баллон с водородом; 3 - горелка; 4 - токоподвод; 5 - шланг для подачи водорода

Схема установки для атомно-водородной сварки

При горении дуги в смеси водорода и азота в состав установки входит еще баллон с аммиаком, крекер для получения азотно-водородной смеси из аммиака, аммиачный вентиль, водоотделитель и осушитель для газа. Водород с воздухом образует взрывные смеси, поэтому все соединения трубопроводов, вентилей, шлангов должны быть надежными, а помещения, где производится работа, хорошо вентилируемые.

1 - корпус; 2 - сосуд, питающий пост азотно-водородной смесью; 3 - нагреватель; 4 - труба с катализатором; 5 - катализатор; 6 - электродвигатель; I - баллон с аммиаком; II - крекер; III - водоотделитель; IV - азотно-водородный аппарат

Схемы крекера (а) и установки (б) для сварки азотно-водородной смесью

При соединении водорода с углеродом в условиях сварочной дуги происходит обезуглероживание металла. Поэтому в производственных условиях вместо чистого водорода применяют смеси водорода с азотом. Для расщепления аммиака на водород и азот используют аппараты-крекеры (см. рис. а), в которых расщепление происходит при 600 °С в присутствии катализатора - железной стружки. Из крекера смесь газов поступает в очиститель (см. рис. б) и далее в осушитель, где азотно-водородная смесь, пройдя слой хлористого кальция, поступает по резиновому шлангу в сварочную горелку.

Технические характеристики аппаратов для атомно-водородной сварки

Тип аппарата Тип горелки Номинальное напряжение, В Пределы регулирования силы тока, А Номинальная мощность, кВт
ГЭ-1-2 ГЭГ-2-2 220 30-83 18,3
ГЭ-2-2 ГЭГ-1-1 260 20-75 15,6
АВ-40 Г12-1 220 15-49 10,7
АГЭС-75 ГЭГ-1-1 300 20-100 22,6

Известны аппараты для атомно-водородной сварки типа ГЭ-1-2, ГЭ-2-2, АВ-40, АГЭС-75, техническая характеристика которых приведена в таблице.

Атомно-водородная сварка широко применялась в самолетостроении, химическом машиностроении и других отраслях промышленности. В настоящее время из-за значительного прогресса других способов сварки атомно-водородная сварка применяется редко.

weldering.com

Атомно водородная сварка: особенности и все нюансы процедуры

Технологический процесс водородной сварки представляет собой газосварку по принципу электромеханического разложения воды на два компонента: водород и кислород. Это особая технология и своими характеристиками принципиально отличается от других способов газосварки. Например, атомно водородная сварка, которая производится с принудительным добавлением водорода.

Область применения

Такая газосварка, своими уникальными свойствами, завоевала широкое применение для специальных легированных сталей и алюминиевых сплавов. Эта водородная газосварка экономически выгодна при сваривании конструкций и изделий толщиной до 5 миллиметров.

Широкое применение такая технология нашла в:

  • Авиастроении.
  • Медицинской сфере.
  • Химической промышленности.
  • Ракетно-космическом производстве.
  • Металлургической отрасли.

Во время выполнения этого водородно кислородного типа сварки происходит медленный и равномерный нагрев металла. Такой способ нагрева материала необходим при работе с:

  1. Низкоуглеродистыми и легированными сталями, толщиной до 5 миллиметров.
  2. Цветными металлами.
  3. Инструментальными сталями, для которых необходим медленный нагрев и охлаждение.
  4. Наплавочными работами при наплавке резцов.
  5. Чугуном и специальными аналогичными сталями, которые медленно остывают в среде угля и нагреваются равномерно по всей свариваемой поверхности. Своими технологическими режимами, такая газосварка предотвращает появления трещин в сварном шве.
  6. Ювелирном производстве.
  7. Изготовлении стоматологического инструмента.
  8. При изготовлении металлических оправ
  9. Запайке медицинских ампул с лекарствами.

Технологический процесс

Технологический процесс такой сварки основан на принципе подачи водородной смеси в сварочную зону. Сварочная горелка – это тот инструмент, который определяет направления, и количество этой смеси. Во время выполнения водородно кислородной технологии сварки, из-за больших температур, горелка по краям оплавляется. Ее необходимо своими руками очищать. Этот процесс газосварки может выполняться в ручном и автоматическом режимах.

Люди с опытом проведения сварочных работ могут выполнять такие работы самостоятельно своими руками. Достаточно приобрести простейший сварочный аппарат эффект 210, в комплекте поставляется дополнительная горелка. Такой аппарат работает от напряжения электросети 220 в. Им хорошо достигается эффект порезки тонких металлических пластин из любых легированных сталей, с последующим соединением любых изделий. Самодельная доработка для использования газовых баллонов с другими газами, этот сварочный аппарат можно использовать для выполнения технологии, которая называется — атомно водородная сварка.

Эффективно процесс сваривания в водородной среде используется на станциях технического обслуживания и ремонта автомобилей.

Горелка с правильно подобранным диаметром в соответствии с толщиной свариваемых деталей, обеспечивает высокий эффект продуктивного сваривания.

Похожие статьи

goodsvarka.ru

Что собой представляет сварка водородная?

  • 04 декабря
  • 107 просмотров
  • 44 рейтинг

Оглавление: [скрыть]

  • Технология процесса водородной сварки
  • Виды сварочных аппаратов
  • Создание водородно-сварочного оборудования в домашних условиях

Сегодня среди всех видов газопламенных обработок все большую популярность получает сварка водородная. Такая газосварочная технология основана прежде всего на процессе электрохимического распада воды на два химических элемента: водород и кислород.

Схемы водородной сварки.

Процедура сварки отличается наибольшей эффективностью и обладает большими преимуществами перед сваркой, где главным элементом выступает соединение кислорода с ацетиленом.

Водородную сварку можно отнести к категории безвредных технологий, так как весь процесс горения основан на единственном элементе — водяном паре. В ходе работы температура горелки может повыситься до 2600°С, а это значит, что данная технология позволит осуществить любую сварку, спаивание или поможет прорезать различные виды черных металлов.

Технология процесса водородной сварки

Так как водородное пламя имеет ряд преимуществ перед ацетиленовым, его чаще используют для прорезания и спайки изделий из металла. Из-за того что в результате горения выделяется водяной пар, такая сварка считается самой безопасной. При использовании в ходе сварки водорода как топливного элемента, на покрытии металла может возникнуть слой шлака большой толщины. Выполняемый при этом сварочный шов будет иметь тонкую толщину и рыхлость. Чтобы избежать этого, в основном используют органические соединения, которые, наоборот, связывают кислород. Для этого лучше применять различные углеводороды (бензин, толуол и др.) и подогревать их до достижения температуры 80% от температуры кипения. При сварке понадобится минимальное количество углеводородов для максимального результата, поэтому она и намного дешевле, чем другая газопламенная обработка.

Устройство водородной горелки.

При использовании водородной сварки не нужно применять газовые баллоны, являющиеся эффективными источниками смеси водорода с кислородом. Дело в том, что они очень опасны при эксплуатации. Когда происходит сварка, водородное пламя совсем не видно при дневном свете. Поэтому для облегчения работы необходимо использовать специальные датчики. Надежность источников газа зависит прежде всего от аппаратов, работа которых возможна при наполненности водой, где с помощью воздействия электроэнергии она распадается на кислород и водород. При помощи таких электролизеров очень просто выполняется электролизная сварка, где в качестве основного элемента соединения деталей используется водородно-кислородная смесь.

В некоторых случаях используется атомно-водородная сварка, представляющая собой электрохимический процесс плавления. Действие достигается в результате нагревания электрической дуги расщепления водорода. По уровню содержания тепла атомно-водородная сварка несколько отличается от ацетиленово-кислородной сварки и других видов сварок. В основном данный вид используется при сварке чугуна или стали. В промышленных предприятиях атомно-водородная сварка применяется в редких случаях по причине высокого напряжения, которое опасно для любого человека.

Вернуться к оглавлению

Для осуществления любого вида сварочных работ необходимо применять аппарат для сварки, отсутствие которого на любом строительном объекте или в бытовых условиях недопустимо. Ведь он является единственным аппаратом с возможностью скрепления изделий из металла.

Электросхема водородной горелки.

При водородной сварке использованию подлежит водородно-сварочное оборудование. Водородный аппарат используется не только для резки и спайки разных видов металлов, но и для отделки различного пластика, стекла или кварца.

Этот вид оборудования подлежит использованию в отраслевых областях, где для работы нужен нагрев до максимальных температур.

Сварочный аппарат работает за счет водорода, который вырабатывается в самом аппарате. Вследствие распада молекул воды на два важных элемента, кислород и водород, удается получить водород. После этого образуется газовая смесь, имеющая максимальную энергию. При помощи нее можно осуществлять работы по соединению различных металлических конструкций.

Для того чтобы это устройство работало правильно, нужно подготовить 1,5 л дистиллированной воды и освободить доступ к сети электропитания.

Это оборудование очень легко эксплуатируется, не требует частого перезаряжания и имеет небольшую трудоемкость. Работа начинается уже через несколько минут после включения в сеть электропитания. При помощи аппаратов водородной сварки можно осуществлять сварку деталей толщиной до трех миллиметров, а это значит, что он может использоваться ювелирами, стоматологами, специалистами по ремонту бытовой техники.

Водородно-кислородные электролизеры отличаются мощностью, в зависимости от которой допускается выполнение различных сварочных работ.

Схема электролизера для водородной сварки.

К ним относится спайка, сварочные работы, кислородная резка и другие. При сварке водородом можно выполнить огромный перечень работ, начиная с микросварки и заканчивая резкой стальных листов. Эти аппараты малогабаритные и могут применяться для сварки листов размером до 2 мм при мощности 1,8 кВт.

В некоторых случаях применяются ацетиленовые генераторы и баллоны. Их целесообразно применять только в полевых условиях, где нет возможности использовать электричество. Если имеется разъем электропитания, то лучше использовать громоздкое сварочное оборудование.

Атомно-водородная сварка немного отличается своим технологическим процессом от обычного вида таких работ. В процессе происходит подача водорода в сварочную область. При помощи сварочной горелки можно с легкостью определить направление и объем смеси.

В ходе выполнения сварки с элементами кислорода и водорода, происходит оплавление краев горелки из-за слишком высокого уровня температуры. Поэтому она подлежит немедленному очищению. Такой процесс газосварки можно выполнить как в ручном, так и в автоматическом режиме.

Специалисты, имеющие навыки в этой области, способны делать эти необходимые работы без чьей-либо помощи.

Нужно просто купить аппарат для сварки с эффектом 210, где в упаковке имеется еще одна горелка. Этот аппарат начинает работу после включения его в сеть электропитания 220 Вт. Им можно легко достичь результата при резке металлических пластин небольшой толщины либо пластин из легированных сталей.

Вернуться к оглавлению

Водородный прибор для сварки может пригодиться каждому и в домашних условиях. Если покупать такой прибор в магазине, это обойдется очень дорого.

Тем более каждый может самостоятельно изготовить его дома. Для того чтобы смастерить сварочный аппарат дома, понадобятся следующие инструменты и материалы:

Для выполнения водородной сварки потребуется полтора литра дистиллированной воды.

  • гладкий лист, состоящий из нержавеющего металла;
  • металлические болты и гайки;
  • поликарбонат;
  • материал резины или пластика;
  • полимерный компонент — герметик;
  • соединительные детали, называемые штуцеры.

В процессе сборки сварочного водородного прибора очень важно придерживаться технологии выполнения работ. Это все можно узнать, прочитав инструкцию.

Весь процесс сварки и резки с помощью водорода, по сравнению с ацетиленовым или пропановым, допускает получение среза без дополнительной обработки шлифовальными инструментами. Также при использовании этой технологии исключено выбрасывание опасной окиси азота, в то время как металл не может поглотить углерод, в связи с чем закаляется.

Водородные сварочные аппараты необходимо эксплуатировать при работах, выполняемых в труднодоступных местах, где невозможно разместить баллон, наполненный нужным веществом.

Другие разновидности водородного оборудования допускают производить сварку и при минусовой температуре.

expertsvarki.ru

Атомно-водородная сварка - Большая советская энциклопедия

Аргоно-дуговая сварка, электрическая дуговая сварка с подачей в зону сварки струи аргона (иногда гелия) для защиты сварочной ванны от вредного воздействия атмосферного воздуха. А.-д. с. выполняется…

Атомно-водородная сварка, электрическая сварка дугой переменного тока, горящей между двумя вольфрамовыми электродами в атмосфере водорода. Обрабатываемый металл не включают в цепь дуги (косвенный нагрев). В зону дуги подают водород (иногда диссоциированный аммиак). По способу действия А.-в. с. следует считать одним из видов плазменной сварки. Напряжение источника тока около 300 в, сила тока 20—80 а, диаметр электродов 1,5—4 мм. Водород диссоциирует с превращением двухатомного водорода в атомарный h4> 2H, с затратой энергии около 400 Мдж/кмоль (100 000 кал/моль). На поверхности металла водород рекомбинирует в двухатомную форму, освобождает энергию диссоциации, передаёт её металлу и расплавляет его с образованием сварочной ванны. А.-в. с. нержавеющей стали и алюминия толщиной 1—5 мм применяют в незначительных размерах; её вытесняет аргоно-дуговая сварка.

К. К. Хренов.

allencyclopedia.ru

www.samsvar.ru

Водородная сварка Википедия

Водородная сварка — дуговая сварка, во время которого дуга горит в атмосфере водорода между двумя неплавящимися вольфрамовыми электродами.

История

Атомно-водородную сварку изобрел в 1925 г. американец Ленгмюр[1].

Характеристика

При использовании водородной сварки под действием высокой температуры происходит диссоциация молекул водорода. При дальнейшей рекомбинации атомарного водорода в двухатомный высвобождается энергия диссоциации, как дополнительная теплота, что ускоряет процесс сварки. Защита зоны сварки водородом обеспечивает высокое качество шва почти для всех металлов (кроме меди и его сплавов). Зазор между сварными кромками заполняется присадочным металлом.

Атомноводная сварка применяется для образования герметичных и высокопрочных швов.

Вследствие того, что в результате горения выделяется водяной пар, этот вид сварки считается наиболее безопасным, тем не менее применение атомно-водородной сварки ограничено, так как источники питания должны иметь высокое напряжение — около 250—300 В, что опасно для жизни человека; процесс этой сварки трудно поддается механизации.

Тепло, вырабатываемое факелом водородной сварки достаточно, чтобы сварить вольфрам (3422°С), наиболее тугоплавкий металл. Присутствующий водород также выступает в качестве защитного газа, предотвращая окисление и загрязнение углеродом, азотом или кислородом, который может серьезно повредить свойства многих металлов.

Электрическая дуга поддерживается независимо от заготовки или свариваемых деталей. В качестве газообразного водорода применяется обычно двухатомные молекулы (Н2). При температуре вблизи дуги свыше 600 °C водород распадается к атомарной форме, одновременно поглощая большое количество тепла от дуги. Когда атомы водорода ударяют относительно холодную поверхность (зону сварного шва), происходит рекомбинация водорода к его двухатомной форме с высвобождением энергии, связанной с формированием этой связи.

Формы дуги

Дуга в водородной сварке может имеет две формы:

  • Cпокойная — без характерного веера. Напряжение менее 20-50 В, расход водорода — 500—800 л/ч.
  • Звенящая — с веером пламени, касающимся поверхности изделия. В этой форме дуга издает звук. Напряжение от 60 до 120 В и расход водорода — 900—1800 л/ч.

Литература

  • Украинская советская энциклопедия : [в 12 т.] / Гл. ред. М. П. Бажан; редкол .: А. К. Антонов и др. — 2-е изд. — К . : Голов. ред. Уре, 1974—1985.
  • Kalpkjian, Serope and Steven R. Schmid. Manufacturing Engineering and Technology textbook Fifth edition. Upper Saddle River: Pearson Education, Inc., 2006
  • Atomic Hydrogen Welding. Specialty Welds. Проверено 26 января 2008.
  • "Atomic-Hydrogen Welding", Odhams Practical & Technical Encyclopaedia, 1947, <http://www.lateralscience.co.uk/AtomicH/AHW.html>. Проверено 26 января 2008. 

Ссылки

Примечания

wikiredia.ru

Водородная сварка - Большая Энциклопедия Нефти и Газа, статья, страница 1

Водородная сварка

Cтраница 1

Водородная сварка применяется на всех заводах аккумуляторной промышленности и на большинстве ремонтных предприятий при монтажных работах.  [1]

Сплав удовлетворительно сваривается газовой, дуговой и водородной сваркой. Поставляется в виде листов, плит и отливок. Наилучшая коррозионная стойкость и вязкость достигаются после закалки с 1220 в воде.  [3]

С изучением электрических явлений в газах тесно связаны также методы так называемой контактной сварки ( процессы в контактном слое) и методы водородной сварки, основанные на диссоциации молекулярного водорода в электрической дуге между вольфрамовыми электродами.  [4]

Водород, который хорошо подходит для сварки изделий из железа и малоуглеродистых сталей, совершенно непригоден для сварки сплавов, содержащих никель ( например, не -, ржавеющих сталей), так как водород растворяется в расплавленном никеле, а затем при отвердевании металла выделяется обратно, образуя трещины и поры. Водородная сварка также непригодна для меди и медных сплавов.  [5]

Хастелой С применяется в виде литья и прокатанных листов и плит. Детали свариваются автогенной, дуговой и водородной сваркой. Когда требуется повышенная твердость, детали подвергают отжигу при 860 - 870 С с охлаждением на воздухе.  [7]

Штанга - медная полоса сечением 60Х Х12 мм, освинцованная по всей поверхности ( кроме контактной) па толщину 4 - 5 мм. Полотно со штангой соединяют водородной сваркой. На полотнах устанавливают ограничители из винипласта млн полиэтилена для фиксации положения электродов в ванне. Электроды в ванне соединены параллельно, ванны в серии - последовательно. Серию обычно включает 150 - 220 ванн. Ванны располагают каскадно или на одном уровне.  [8]

Аноды отливают из свинца с добавкой 1 % серебра, повышающего их коррозионную стойкость. Анодную штангу из освинцованной медной шины приваривают к аноду водородной сваркой.  [9]

Выделяющейся теплоты бывает достаточно для расплавления металла. Атмосфера водорода предохраняет свариваемую поверхность от окисления, в чем и заключается преимущество водородной сварки.  [11]

В безинжекторных горелках высокого давления ацетилен поступает в горелку под давлением выше 0 5 am; в работе они имеют более устойчивое пламя и не требуют частого регулирования. Кроме того, в них устраняется опасность обратного удара пламени и пережога свариваемого металла вследствие избытка кислорода. Применяют их также и для водородной сварки. В момент сварки кислород и ацетилен поступают в горелку по гибким шлангам. Кислородный шланг изготовляют более прочным, чем ацетиленовый.  [12]

Сталь типа 25 - 20 хорошо сваривается ацетилено-кислородной, электродуговой, атомноводородной сварками и сваркой в гелии. Точечная сварка применяется только для деталей, не работающих на усталость. Наилучшие результаты обеспечивает электродуговая и атомноводородная сварки. Для получения сварного шва, стойкого против вибрации, рекомендуется применять атомно - водородную сварку с газовой завесой из горящего водорода с противоположной стороны шва для предохранения его от окисления.  [13]

Страницы:      1

www.ngpedia.ru

Водородная сварка — Википедия

Материал из Википедии — свободной энциклопедии

Водородная сварка — дуговая сварка, во время которого дуга горит в атмосфере водорода между двумя неплавящимися вольфрамовыми электродами.

Атомно-водородную сварку изобрел в 1925 г. американец Ленгмюр[1].

При использовании водородной сварки под действием высокой температуры происходит диссоциация молекул водорода. При дальнейшей рекомбинации атомарного водорода в двухатомный высвобождается энергия диссоциации, как дополнительная теплота, что ускоряет процесс сварки. Защита зоны сварки водородом обеспечивает высокое качество шва почти для всех металлов (кроме меди и его сплавов). Зазор между сварными кромками заполняется присадочным металлом.

Атомноводная сварка применяется для образования герметичных и высокопрочных швов.

Вследствие того, что в результате горения выделяется водяной пар, этот вид сварки считается наиболее безопасным, тем не менее применение атомно-водородной сварки ограничено, так как источники питания должны иметь высокое напряжение — около 250—300 В, что опасно для жизни человека; процесс этой сварки трудно поддается механизации.

Тепло, вырабатываемое факелом водородной сварки достаточно, чтобы сварить вольфрам (3422°С), наиболее тугоплавкий металл. Присутствующий водород также выступает в качестве защитного газа, предотвращая окисление и загрязнение углеродом, азотом или кислородом, который может серьезно повредить свойства многих металлов.

Электрическая дуга поддерживается независимо от заготовки или свариваемых деталей. В качестве газообразного водорода применяется обычно двухатомные молекулы (Н2). При температуре вблизи дуги свыше 600 °C водород распадается к атомарной форме, одновременно поглощая большое количество тепла от дуги. Когда атомы водорода ударяют относительно холодную поверхность (зону сварного шва), происходит рекомбинация водорода к его двухатомной форме с высвобождением энергии, связанной с формированием этой связи.

Дуга в водородной сварке может имеет две формы:

  • Cпокойная — без характерного веера. Напряжение менее 20-50 В, расход водорода — 500—800 л/ч.
  • Звенящая — с веером пламени, касающимся поверхности изделия. В этой форме дуга издает звук. Напряжение от 60 до 120 В и расход водорода — 900—1800 л/ч.
  • Украинская советская энциклопедия : [в 12 т.] / Гл. ред. М. П. Бажан; редкол .: А. К. Антонов и др. — 2-е изд. — К . : Голов. ред. Уре, 1974—1985.
  • Kalpkjian, Serope and Steven R. Schmid. Manufacturing Engineering and Technology textbook Fifth edition. Upper Saddle River: Pearson Education, Inc., 2006
  • Atomic Hydrogen Welding. Specialty Welds. Проверено 26 января 2008.
  • "Atomic-Hydrogen Welding", Odhams Practical & Technical Encyclopaedia, 1947, <http://www.lateralscience.co.uk/AtomicH/AHW.html>. Проверено 26 января 2008. 

ru.wikiyy.com

Атомно-водородная сварка | SVARKA-INFO.COM - виртуальный справочник сварщика

Атомно-водородная сварка

 

Плавление металла происходит за счет тепла, выделяемого при превращении атомарного водорода в молекулярный водород, и за счет тепла независимой дуги, горящей между двумя вольфрамовыми электродами.

Тепловой эффект от излучения дуги и от сгорания молекулярного водорода в наружной зоне пламени незначителен по сравнению с эффектом рекомбинации атомов водорода.

Температура атомно-водородного пламени составляет ~ 3700° С, что по концентрации тепла приближает этот способ сварки к сварке в среде защитных газов. Водород при этом способе сварки передает тепло от дуги к изделию вначале за счет поглощения его при реакции диссоциации, а затем путем выделения при рекомбинации атомов водорода. Высокая активность водорода обеспечивает хорошую защиту металла шва от вредного воздействия кислорода и азота воздуха.

При атомно-водородной сварке дуга горит между двумя вольфрамовыми электродами, расположенными под углом (рис. 1). В зону дуги можно подавать чистый водород или азотно-водородные смеси, получаемые при диссоциации аммиака. Питание дуги осуществляется от источников переменного тока. Из-за высокого охлаждающего действия реакции диссоциации водорода и высокого потенциала ионизации водорода напряжение источника питания дуги, требуемое для ее зажигания, должно быть 250…300 В. Напряжение горения дуги 60…120 В. Сила тока дуги 10…80 А.

 

 

Рис. 1. - Схема процесса атомно-водородной сварки:

1 - электроды; 2 - мундштуки горелки; 3 - зона превращения атомарного водорода в молекулярный; 4 - молекулярный водород, поступающий из мундштуков; 5 - зона диссоциации водорода на атомарный.

 

Широкий диапазон изменения напряжения горения дуги мало сказывается на величине изменения силы тока. Напряжение горения дуги зависит от расхода водорода и расстояния между вольфрамовыми электродами.

Зажигание дуги осуществляется коротким замыканием вольфрамовых электродов, обдуваемых водородом, или, лучше, замыканием электродов на угольную (или графитовую) пластинку при обдувании струей газа, так как в этом случае обеспечивается легкое зажигание дуги и не требуется повышенного напряжения холостого хода источника питания. После зажигания дуги расстояние от концов электродов до поверхности изделия устанавливают в пределах 4…10 мм. Это зависит от мощности атомно-водородного пламени и толщины свариваемого металла.

Дуга может быть спокойной (рис. 2, а), когда нет в дуге характерного веера, и звенящей (рис. 2, б), когда веер пламени касается поверхности свариваемого изделия и дуга издает резкий звук. Для спокойной дуги напряжение не превышает 20…50 В и расход водорода 500…800 л/ч, для звенящей дуги — 60…120 В и 900…1800 л/ч соответственно.

svarka-info.com

Сварка атомно-водородная - Справочник химика 21

    Выделяющаяся при этом энергия передается поверхности и нагревает твердое тело. При большом числе рекомбинирующихся атомов поверхность сильно разогревается. Примером может служить сильное разогревание твердых тел при рекомбинации на их поверхности атомов водорода (атомная водородная сварка). [c.87]

    Соединение атомов водорода в молекулы протекает значительно быстрее на поверхности металлов, чем в самом газе. При этом металл воспринимает ту энергию, которая выделяется при образовании молекул, и нагревается до очень высоких температур. Последнее создает возможность технического использования атомарного водорода для т. н. атомно-водородной сварки металлов. [c.121]

    Явление термической диссоциации молекул водорода и преимущественное соединение атомов в молекулу Нг на поверхности металлов используется в процессе атомно-водородной сварки. [c.19]

    Из ряда используемых в промышленности видов сварки для получения вакуумноплотных швов используются атомно-водородная сварка, сварка угольным электродом, аргоно-дуговая, гелио-дуговая и водородно-дуговая сварка. [c.43]

    В атомно-водородной сварке используется дуга переменного тока, горящая между двумя нерасходуемыми электродами (рис. 2-20,г). Обычно ток дуги равен 20—60 а, рабочее напряжение зажигания около 400 в. Тепловая энергия выделяется дугой переменного тока, горящей между двумя вольфрамовыми электродами в среде водорода, и переносится на свариваемый [c.43]

    При водородно-дуговой сварке применяется постоянный ток прямой полярности (рис. 2-21,а) и используется плавящийся электрод. Дуга защищена струей водорода, и тепло, выделяющееся при горении и рекомбинации водорода (см. выше об атомно-водородной сварке), добавляется к теплу, создаваемому дугой. [c.44]

    В некоторых случаях (как, нанример, при использовании в качестве защитной атмосферы, при восстановлении окислов некоторых металлов, при атомно-водородной сварке) водород может [c.306]

    Питание дуги в установках для атомно-водородной сварки должно производиться от отдельного трансформатора. Не допускается непосредственное питание дуги через регулятор тока любого типа от распределительной сети. [c.910]

    Б. Атомно-водородная сварка [c.913]

    Во всех случаях производства атомно-водородной сварки, газоэлектрической резки и других видов электросварочных работ, выполняемых сидя, на коленях или лежа на свариваемых изделиях, сварщикам должны выдаваться диэлектрические маты достаточных размеров для изоляции от свариваемого изделия. [c.921]

    При атомно-водородной сварке и газоэлектрической резке рабочим должны выдаваться диэлектрические коврики для изоляции их от земли или диэлектрические перчатки. [c.922]

    При атомно-водородной сварке в горелке должно быть предусмотрено устройство автоматического отключения напряжения и прекращения подачи водорода в случае разрыва цепи. [c.942]

    Сварка с графитовыми электродами применима лишь к устойчивым к окислению металлам. В какой-то мере защищает материалы от окисления атомно-водородная сварка. Водородная дуга является очень концентрированным источником тепла, поскольку диссоциированный в плазме водород отдает свою энергию рекомбинации рабочему участку. Однако многие металлы вблизи температур плавления очень сильно растворяют водород. При охлаждении зона сплавления оказывается перенасыщенной водородом, в результате чего шов получается пористым или хрупким. Такое поведение свойственно железу, никелю и меди. Применение графитовой дуги и атомно-водородные дуговые способы явились первой аль- [c.248]

    При атомно-водородной сварке напряжение холостого хода допускается до 300 в, при ручной газоэлектрической резке —до 180 в и при механизированной газоэлектрической резке — до 500 в при соблюдении требований безопасности, указанных в пунктах 97—105, 116—121 и 182 настоящих Правил. [c.912]

    В струе защитных газов атомно-водородная сварка газовая сварка термитная сварка и ряд других. [c.185]

    Способ сварки 1 — электродуговая 2 — газовая з — атомно-водородная. [c.119]

    Схема применяемого для этого аппарата изображена на рис. IV-4. Между двумя вольфрамовыми стержнями создается электрическая дуга, сквозь которую по облегающим стержни трубкам пропускается ток водорода. При этом часть молекул Н2 распадается на атомы, которые затем вновь соединяются на металлической поверхности, помещаемой недалеко от дуги. Металл может быть таким путем нагрет выше 3500° С. В этих условиях происходит быстрая и прочная сварка отдельных его кусков. Большим достоинством атомно-водородной сварки является равномерность нагрева, [c.123]

    Применение. Газообразный В. применяют для синтеза NHз, СН3ОН, высших спиртов, углеводородов, НС1 и др., как восстановитель при получении мц. орг. соединений, в т.ч. пищ. жиров. В металлургии В. используют для получения металлов, создания защитной среды при обработке металлов и сплавов, в нефтепереработке-для гидроочистки нефтяных фракций и смазочных масел, гидрирования и гидрокрекинга нефтяных дистиллатов, нефтяных остатков и смол. В. применяют также в произ-ве изделий из кварцевого стекла и др. с использованием водородно-кислородного пламени (т-ра выше 2000 °С), для атомно-водородной сварки тугоплавких сталей и сплавов, для охлаждения турбогенераторов, как восстановитель в топливных элементах. [c.401]

    Атомно-водородная сварка применяется для сварки трудносвари-ваемых материалов, включая алюминий и хром (табл. 2-16). Водород, который хорощо подходит для сварки изделий из железа и малоуглеродистых сталей, совершенно непригоден для сварки сплавов, содержащих никель (например, нержавеющих сталей), так как водород растворяется в расплавленном никеле, а затем при отвердевании металла выделяется обратно, образуя трещины и поры. Водородная сварка также непригодна для меди и медных сплавов. [c.44]

    Стали хорошо свариваются газовой, злектродуговой и атомно-водородной сваркой. Для получения сварного шва, стойкого против вибрации, рекомендуется применять атомно-водородную сварку с газовой завесой йз горячего водорода с противоположной стороны шва для предохранения его от окисления [c.80]

    Применение. Почти сто лет после открытия В. не находил промышленного применения. Лишь во 2-й половине 19 в. стали проводиться опыты по выяснению влияния добавок В. на свойства стали. Для производства качественных сталей сейчас потребляется ок. 85% от всего количества добываемого В. Ок. 10% идет на произ-во карбидных и др. сплавов (см. Вольфрама сплавы и Карбиды). Чистый Е. начали применять в пром-сти с начала 20 в., после открытия способа получения компактного ковкого металла. Первой областью применения чистого В, явилось использование его в качестве нитей накаливания для электроламп. Вследствие высокой темп-ры плавления и низкой упругости пара при высоких темп-рах В. является незаменимым материалом для этой цели. В. применяется также для изготовления нагревателей в элэкт-рич. печах, электродов для атомно-водородной сварки, различных деталей сысоковакуумных уоилигелод. [c.327]

chem21.info