Коэффициент теплопроводности газов (Таблица). Теплопроводность аргон


Стеклопакеты с аргоном, достоинства стеклопакета с аргоном, особенности использование таких стеклопакетов

С ростом цен на энергоносители политика в области теплосбережения жилых и общественных зданий значительно поменялась. Проблема энергоэффективности становится все более актуальной, что отражается в повышении требований к потерям тепла ограждающими конструкциями, заложенными в строительных нормах и в Федеральном законе об энергосбережении и повышении энергетической эффективности (№ 261-ФЗ).

Согласно новым регламентирующим нормативным документам, коэффициент сопротивления теплопередаче светопрозрачных ограждающих конструкции должен быть не менее 0,8м.кв°С/Вт. Добиться таких показателей использованием двухкамерного стеклопакета уже не возможно. Заполнение внутренних камер аргоном значительно снижает потерю тепла за счет того, что внутренние межстекольные пространства, заполненные обычно осушенным воздухом, заполняются инертным газом. За счет этого внутренняя конвекция снижается.

Суть конвекции в том, что воздух нагреваясь, поднимается вдоль теплого стекла и охлаждаясь опускается вдоль холодного, отдавая тепло на улицу. Этот процесс замедляется за счет того, что инертный газ имеет большую плотность, чем воздух и процесс передачи холодного воздуха на теплое внутреннее стекло замедляется.

В среднем заполнение аргоном снижает теплопотери на 15% относительно обычного осушенного воздуха.

Аргон, один из самых дешевых газов, добываемых непосредственно из атмосферы, поэтому цена стеклопакета увеличивается очень незначительно.

Сборка качественных стеклопакетов выполняется на автоматизированных линиях. Наполнение камеры аргоном контролируется специальным прибором. Внутреннее давление тщательно анализируется. Переизбыток давления приводит к искажению плоскостности, со стороны это выглядит как линзование, что очень портит внешний вид.

004

Рис. 1. Аргон в межстекольном пространстве.

Особенности стеклопакетов с аргоном

При проектировании и заказе различных конструкций следует учитывать некоторые особенности стеклопакетов с заполнением аргоном:

  • Энергоэффективность однокамерного стеклопакета равна двухкамерному, тем самым можно сократить вес изделия на 10 кг на 1м.кв и снизить нагрузку на оконную и дверную фурнитуру;
  • Светопропускание ниже на 15%, что важно при остеклении пространств, постоянно находящихся под прямыми лучами солнца;
  • Использование аргона для заполнения для кровельных пакетов «зимних садов» или атриумов не желательно, так как образуется конвекционная петля. Из-за наклона тяжелый инертный газ застаивается в нижней части, верхняя часть без конвекционных потоков промерзает;

Минимальная необходимая толщина межстекольного пространства для эффективного энергосбережения должна быть не менее 8 мм, в тонких камерах конвекция затруднена. Применение камер толщиной 6мм запрещено ГОСТом.

Информация о том, что аргон со временем проходит через двухконтурную герметизацию и стеклопакет теряет свои теплосберегающие качества, в целом, верна, но это очень длительный процесс. Ближайшие 10 – 15 лет стеклопакеты с аргоном будут надежно защищать ваше жилье от холода.

Рис. 2. Стеклопакет с аргоном.

Достоинства стеклопакета с аргоном

Наиболее привлекательным свойством использования аргона для повышения теплосбережения является его дешевизна и экологичность. Инертный газ аргон:

  • Не токсичен, и не имеет запаха;
  • Не оказывает вредного влияния на людей и животных в том числе страдающих аллергией и астмой;
  • Прозрачен, не ухудшает светопередачу;
  • Не взрывоопасен, не горюч.

Аргон находится в атмосфере всегда, поэтому даже если стеклопакет разобьется, заметить увеличение концентрации в воздухе и ухудшение самочувствия невозможно.

41640833_w640_h640_3dsf1

Рис. 3. Стеклопакет с аргоном защищает от жары и от холода.

Теплоизоляция

Энергоэффективность – главное преимущество стеклопакета с аргоном. Для сравнения приведем коэффициент сопротивления теплопередачи обычного двухкамерного стеклопакета и стеклопакета, обе камеры которого заполнены аргоном.

Коэффициент сопротивления передаче, измеряется в м.кв °С/Вт. Это величина, характеризующая сопротивление потере тепла единицей (1 м.кв.) материала в Вт на градус С.Чем ближе этот показатель к единице, тем лучше, тем теплее будет конструкция.

Коэффициент сопротивления теплопередачи стеклопакетов равен:

  • однокамерного – 0,32 м.кв °С/Вт
  • двухкамерного – 0,47 м.кв °С/Вт
  • однокамерного с заполнением аргоном – 0,48 м.кв °С/Вт
  • двухкамерного с заполнением аргоном – 0,52 м.кв °С/Вт
image003_3

Рис. 4. Сравнение энергоэффективности стеклопакетов.

Шумоизоляция

За счет более высокой плотности инертного газа, прохождение звуковой волны через межстекольное пространство будет затруднено, что повышает звукоизоляцию конструкции. Особенно это заметно при установке окон в домах, расположенных вдоль насыщенных городских транспортом трасс.

Но надо помнить, что звукоизоляция оконной конструкции зависит не только от стеклопакета, но и от качества и количества уплотнителей, обеспечивающих плотный притвор сворки к раме. Достигнуть отличных результатов в шумопонижении только заполнением камер аргоном не возможно, нужен комплекс мер, например, чередование межстеклольного пространства разной толщины, или использование триплекса в качестве одного из стекол, но заметно улучшить комфорт вполне возможно.

1

Рис. 5. Поглощение шума аргоном в межстекольном пространстве.

Защита от ультрафиолета

Для того чтобы защитить жилище от чрезмерного нагревания, а заодно и от выгорания обоев и текстиля внутренней отделки летом, стеклопакет с заполнением аргоном подходит как нельзя лучше. Солнечный луч меняет угол преломления в более плотной газовой среде и теряет свою длинноволновую (ультрафиолетовою) энергосоставляющую. Это свойство следует учитывать, если в помещении много комнатных растений, нехватка ультрафиолета может помешать процессу фотосинтеза.

atermal

Рис. 6. Защита от ультрафиолета.

Что нужно знать о стеклопакетах с аргоном

Внешне стеклопакеты с камерами заполненными аргоном ничем не отличаются, что часто заботит заказчиков, ведь определить наличие газа на глаз невозможно. Единственное отличие– они будут чуть тяжелей обычных, не более чем на 2% за счет большей плотности, а следовательно удельного веса заполнения. О наличии инертного газа свидетельствуют бирки на изделиях. Стеклопакет с заполнением инертным газом согласно ГОСТ 24866-2014 «Стеклопакеты клееные. ТУ», действующего с 01.04.2016 г, должен быть обозначен так:

СПД 4М1-12Аr-4М1-12Ar-М1 ГОСТ 24899-2014,

что будет соответствовать двухкамерному стеклопакету из трех листовых стекол марки М1, с дистанционной рамкой 12 мм, с заполнением межстекольного пространства в обеих камерах аргоном.

Если же бирки нет, следует внимательно рассмотреть внутренние поверхности дистанций. На одной из них должно быть видно небольшое отверстие, заделанное силиконовой пробкой или же, если стеклопакет собирался на линии с меньшей производительности, сборочные уголки в углах должны иметь видимое отверстие, также герметично закрытое пробкой.

a2e0f0b3b9e0

Рис. 7. Силиконовая пробка подтверждает наличие аргона в камере.

Другие инертные газы для заполнения стеклопакета

Свойство инертных газов влиять на теплообмен в межстекольном пространстве замечено уже давно. Для снижения скорости смешивания холодных потоков газа вблизи наружного стекла с более теплыми, в производстве стеклопакетов активно используется аргон, криптон и ксенон, имеющие еще большую плотность и более высокие показатели сопротивления теплопередаче.

Наилучших показателей можно достичь, комбинируя энергосберегающее стекло, особенно с мягким покрытием и заполнение камер инертным газом. Коэффициент сопротивления такого стеклопакета будет в диапазоне от 0,80 до 1,15 в зависимости от используемого инертного газа и толщины камер.

002

Рис. 8. Заполнение инертными газами.

Стеклопакеты с криптоном и ксеноном

Ксенон и криптон за счет большей плотности по сравнению с аргоном обладают более высокими энергосберегающими характеристиками.

Криптон в два раза превышает по этим показателям аргон, ксенон в полтора. Допускается использовать смесь инертных газов в камере.

Подробно о теплосберегающих свойствах инертных газов можно узнать из ГОСТ Р 54166-2010 (ЕН 673:1997) «МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЕПЛОВЫХ ХАРАКТЕРИСТИК», Таблица 1 – Свойства газов, применяемых для изготовления клееных стеклопакетов.

Заполнение камер криптоном и ксеноном используются крайне редко из-за своей дороговизны. Экономически обоснованным применение стеклопакетов с более тяжелыми инертными газами может быть в условиях крайнего Севера.

003

Рис. 9. Сравнение теплопроводности газонаполненных стеклопакетов.

 

okna-biz.ru

таблицы при различных температурах и давлениях

Теплопроводность газов в зависимости от температуры и давления

В таблице приведены значения теплопроводности газов в зависимости от температуры и давления.Значения теплопроводности указаны для температуры в интервале от 20 К (-253 °С) до 1500 К (1227 °С) и давлении от 1 до 1000 атмосфер.

В таблице дана теплопроводность следующих газов: азот N2, аммиак Nh4, аргон Ar, водород h3, водяной пар h3O, воздух, гелий He, кислород O2, метан Ch5, углерода диоксид CO2, фреон-14 CF4, этан C2H6, этилен C2h5. Размерность теплопроводности Вт/(м·град).

Следует отметить, что теплопроводность газов при росте температуры и давления увеличивается. Например, теплопроводность газа аммиака при комнатной температуре и нормальном атмосферном давлении составляет величину 0,024 Вт/(м·град), а при его нагреве на 300 градусов, теплопроводность увеличивается до значения 0,067 Вт/(м·град). Если увеличивать давление этого газа до 300 атмосфер, то значение теплопроводности станет еще выше и будет иметь значение 0,108 Вт/(м·град).

Примечание: Будьте внимательны! Теплопроводность в таблице указана с множителем 103. Не забудьте разделить на 1000!

Теплопроводность неорганических газов в зависимости от температуры

В таблице даны значения теплопроводности неорганических газов в зависимости от температуры при нормальном атмосферном давлении. Значения теплопроводности газов указаны при температуре от 80 до 1500 К (-193…1227 °С).

В таблице приведена теплопроводность следующих газов: закись азота N2O, сера шестифтористая SF6, оксид азота NO, сероводород h3S, аммиак Nh4, серы диоксид SO2, водяной пар h3O, диоксид углерода CO2, пар тяжелой воды D2O, оксид углерода CO, воздух.

Следует отметить, что теплопроводность неорганических газов увеличивается с ростом температуры газа.

Примечание: Теплопроводность газов в таблице указана с множителем 103. Не забудьте разделить на 1000!

Теплопроводность органических газов в зависимости от температуры

В таблице указаны значения теплопроводности органических газов и паров некоторых жидкостей в зависимости от температуры при нормальном атмосферном давлении. Значения теплопроводности газов приведены в таблице в интервале температуры от 120 до 800 К.

Дана теплопроводность следующих органических газов и жидкостей: ацетон Ch4COCh4, октан C8h28, бензол C6H6, пентан C5h22, бутан C4h20, пропан C3H8, гексан C6h24, пропилен C3H6, гептан C7h26, спирт амиловый C5h21OH, ксилол C8h20, спирт изопропиловый C2H7OH, метан Ch5, спирт метиловый Ch4OH, толуол C7H8, спирт этиловый C2H5OH, фреон-22 CHF2Cl, углерод четыреххлористый CCl4, циклогексан C6h22, этан C2H6, углерод четырехфтористый CF4, фреон-11 CFCl3, этил хлористый C2H5Cl, фреон-12 CF2Cl2, этилен C2h5, фреон-13 CF3Cl, этилформиат HCOOC2H5, фреон-21 CHFCl2, эфир диэтиловый (C2H5)2O.

Как видно по данным таблицы, значение теплопроводности органических газов также увеличивается с ростом температуры газа.

Будьте внимательны! Теплопроводность в таблице указана с множителем 103. Не забудьте разделить на 1000! Например, теплопроводность пара ацетона при температуре 400 К (127°С) равна 0,0204 Вт/(м·град).

Источник:Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.

thermalinfo.ru

Теплопроводность - аргон - Большая Энциклопедия Нефти и Газа, статья, страница 1

Теплопроводность - аргон

Cтраница 1

Теплопроводность аргона экспериментально определена рядом исследователей как при атмосферном давлении, так и при повышенных и высоких давлениях.  [2]

Теплопроводность аргона меньше теплопроводности кислорода [3], поэтому при хроматографическом определении кислорода его сигнал будет занижен.  [3]

Чувствительность теплопроводности аргона к изменениям объема уже обсуждалась ранее, и следует относиться с осторожностью к утверждениям о том, что приводимые значения величин соответствуют одному и тому же объему.  [4]

Ротман экспериментально исследовал теплопроводность аргона при атмосферном давлении методом коаксиальных цилиндров при температурах от 54 до 688 С.  [6]

Сравнительно хорошо изучена теплопроводность аргона и при повышенных давлениях. Как следует из табл. 8, наиболее полно исследована область Т 90 - 500 К при р - 600 бар. При некоторых температурах измерения проведены до 2400 - 3000 бар.  [7]

Например, для теплопроводности аргона ( рис. 22) имеются результаты работы [88] ( 1963 г.), рассчитанные в диапазоне температур 2 - Ю3 Т 3 - 104 К и давлений 10 - 4 Р С 1 атм с учетом одно -, двух -, трехкратной термической ионизации по упрощенному методу Брокау [223], а также данные работы [90] ( 1967 г.), рассчитанные в диапазоне 5 - 103 J Т; 20 - Ю30 К при Р-1 атм с учетом высших приближений теории Чепмена-Энскога.  [8]

На установке измерены коэффициенты теплопроводности аргона, азота и воздуха.  [10]

При обработке экспериментальных значений теплопроводности аргона в тех же системах координат ( рис. 33) разброс точек оказывается более заметным, чем для азота. Наиболее существенным для нас является то обстоятельство, что и для аргона обе системы координат позволяют достигнуть примерно одинаковой точности при построении обобщенной кривой по опытным точкам. Большинство экспериментальных данных Икенберри и Раиса [260] и Цибланда и Бартона [255] отклоняется от кривых А / ( р) и ДА / ( р) не более чем на 3 %, и лишь для отдельных точек отклонения превышают указанную величину.  [11]

Цибланд и Бартон [255] определили теплопроводность аргона в диапазоне температур 93 3 - 196 1 К и давлений 1 - 120 атм. Экспериментальные данные представлены для 11 изобар в таблице и на графике. Разность температур между цилиндрами лежала в пределах 0 54 - 6 7 град.  [12]

Необходимо отметить, что экспериментальные значения теплопроводности аргона различных авторов в интервале температур от 600 до 1 000 С существенно отличаются между собой.  [14]

На рис. 4 - 27 нанесены имеющиеся экспериментальные значения теплопроводности аргона при атмосферном давлении в интервале температур от 300 до 1 100 С.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Коэффициент теплопроводности газов (Таблица)

Коэффициент теплопроводности газов связан с их коэффициентом внутреннего трения η и с удельной теплоемкостью при постоянном объеме сν, уравнением k = 0,25 (9γ - 5)γсγ, где γ обозначает отношение cp/cv.

При обычных давлениях теплопроводность газов не зависит от давления, но онд возрастает при высоких и уменьшается при очень низких давлениях, например для воз­духа при давлениях около 0,001 мм Hg.

Изменение k·104 с температурой

Газ

Температура, °C

-200

-100

0

100

500

1000

Аргон

1,09

1,62

2,11

3,60

Хлор

0,72

Гелий

5,84

10,59

14,15

17,06

Водород

5,0

11,23

16,84

21,6

38,9

Криптон

0,88

1,10

Неон

4,65

5,70

Азот

1,58

2,43

3,12

5,42

Кислород

1,59

2,44

3,25

Ксенон

0,51

0,70

Воздух

 1,58

2,41

3,17

7,6

Аммиак

2,18

3,38

Углекислота

1,45

2,23

7,9

Углерода окись

1,51

2,32

3,04

Этан

1,80

Этилен

1,64

Фреон 12

0,85

1,35

Сероводород

1,2

Метан

1,88

3,02

Азота окись

1,54

2,38

Азот закись

1,51

Сернистый газ

0,77

Пары воды

1,58

2,35

5,7

infotables.ru

Отраслевая энциклопедия. Окна, двери, мебель

Статья требует доработки или изменения. Вы можете принять участие в её создании.

Многие годы каждого, кто решил построить дом, и проектировщиков, и строителей, и индивидуальных застройщиков мучает один и тот же вопрос: Как сделать свой дом теплым? Как снизить теплопотери? Как снизить эксплуатационные затраты на обогрев или кондиционирование?

Решение проблемы энергосбережения возможно только с помощью применения системных, комплексных мер. Особую роль в энергобалансе здания играют светопрозрачные конструкции. Уровень их теплозащиты уступает теплозащите стеновых конструкций зданий. На световые проемы приходится более 40% всех теплопотерь здания. Многие специалисты продолжают спорить о теплопроводности своих материалов, обрамляющих светопрозрачную конструкцию, забывая о том, что это составляет всего чуть более 6% от всей ее площади. Так как же сохранить тепло в оставшихся почти 94-х процентах площади окна?

Энергоэффективность светопрозрачной конструкции будет ничтожно мала даже при самом "теплом" профиле и раме, если используется малоэффективный, низкокачественный стеклопакет. При этом сегодня в структуре стоимости одного м2 оконной конструкции на его долю приходится не более 30%. Так за что же мы платим деньги? За профиль и фурнитуру? Постараемся ответить на эти вопросы и поговорить на тему: Что же представляет собой современный энергосберегающий стеклопакет?

Первоначально в стеклопакетах пространство между стеклами заполнялось воздухом или продувалось сухим азотом перед окончательной герметизацией. Стеклопакеты обладают теплоизоляционными свойствами благодаря именно этой прослойке газа. Однако, при таком способе наполнения в герметизированном пространстве между стеклами возникают циркуляционные воздушные потоки, которые увеличивают конвективный перенос тепла между наружным и внутренним стеклами, тем самым снижая коэффициент сопротивления теплопередачи стеклопакета.

Энергетический кризис 70-х годов подхлестнул производителей стеклопакетов к поискам путей для устранения этих недостатков. В то время в США были введены самые жесткие нормы энергосбережения. Для изготовителей стеклопакетов в штатах с резкоконтинентальным климатом наступили трудные времена: они были вынуждены выполнять строгие нормативы и изыскивать возможности для усовершенствования существующих конструкций стеклопакетов. Есть ли возможность, не меняя конструкции стеклопакета, улучшить его теплоизоляционные свойства? Первые попытки были связаны с применением полимерных пленок. Но по причине весьма низкой светопропускной способности данной конструкции от этого варианта пришлось отказаться. Выход был найден, но внешне он не был заметен. Можно сказать, это был "невидимый" выход. Разработчики стеклопакетов предложили просто заменить газ-наполнитель. Для наполнения стеклопакетов предложили использовать инертные газы, обладающие бОльшими вязкостью, плотностью и меньшей теплопроводностью, чем воздух. При заполнении стеклопакетов такими газами уменьшаются конвекционные токи внутри стеклопакета, что приводит к снижению потерь тепла. Для заполнения стеклопакетов были предложены аргон и криптон, а также их смеси. Однако дороговизна и сложность получения криптона первоначально остановили выбор на аргоне. В дальнейшем, по мере удешевления криптона, он так же стал широко использоваться для заполнения стеклопакетов.

Сегодня в США производители потребляют криптона порядка 12 тыс. м2/год, выпуская около 1 млн м2/год газонаполненных стеклопакетов. (Диаграмма 1). За 10 лет потребление криптона выросло в 6 раз, в то время как использование аргона практически не изменилось, а в на-стоящий момент наблюдается устойчивая тенденция к снижению его потребления.

В настоящее время в США и Западной Европе широко используются для заполнения герметичных стеклопакетов криптон и криптоно-аргоновые смеси. Увеличение производства и предложения криптона на мировом рынке за последние 15 лет привело к снижению его стоимости и увеличению доступности для потребителей, в том числе и производителей стеклопакетов. В то же время в России технология заполнения светопрозрачных конструкций криптоном не используется.

Основными факторами, на наш взгляд, сдерживающими распространение криптонозаполненных стеклопакетов в России являются:

  • низкая информированность производителей и потребителей;
  • отсутствие нормативных документов;
  • дискредитация самого факта газонаполнения стеклопакетов производителями низкокачественной продукции (несоблюдение технологии, некачественные материалы, несертифицированный газ и т.д.)
  • заниженные проектные сметы на оконные конструкции;
  • низкая платежеспособность населения.

Несмотря на вышеуказанные факторы, все более ужесточающиеся требования по энергосбережению в области градостроительства заставят строителей через какое-то время обратить внимание на мировой опыт использования криптона для заполнения стеклопакетов.

По результатам проведенных исследований стеклопакетов, наполненных криптоном и криптоно-аргоновыми смесями различного процентного содержания. компании ООО "Неоэнергия". Исследования проводятся совместно с НИИСК (Научно-исследовательским институтом строительных конструкций) г. Киева на базе лаборатории к.т.н. Г.Г.Фаренюка. Исследования еще не закончены, поэтому в настоящей статье мы приведем лишь некоторые их результаты. Исследования проводились с одно- и двухкамерными стеклопакетами с наиболее широко применяемыми формулами 4-16-4 и 4-10-4-10-4, изготовленными из стандартных стекол М1 производства Борского завода и стекол с low-E покрытием - K-стекла и И-стекла производства компаний "Pilkington" и "Guardian" соответственно. Межстекольное пространство заполнялось криптоном, криптоно-аргоновыми смесями, а также чистым аргоном и воздухом.

Криптон - инертный газ, не горючий, не ядовитый, содержится в микроколичествах в воздухе. Использование криптона обусловлено существенно более низкой теплопроводностью по сравнению с воздухом и аргоном. Теплопроводность криптона в 2,6 раза меньше, теплопроводности воздуха и в 1,8 раза меньше теплопроводности аргона, что увеличивает сопротивление теплопередачи стеклопакета.

БОльшие плотность, вязкость и диаметр молекулы криптона по сравнению с аргоном и воздухом приводят к снижению конвекционных токов внутри стеклопакета, что также приводит к увеличению сопротивления теплопередачи. Эти же факторы обуславливают меньшую диффузию криптона во внешнюю среду и повышают долговечность состава газовой среды внутри стеклопакета (см. Таблицу 1).

Параметры при Т=21С° и давлении 0.1 МПа Криптон Аргон Воздух Вязкость х 10 *-6 [Па· с] 22,233 22,493 18,158 Плотность [кг/м*3] 3,43 1,64 1,18

Что касается звукоизолирующих характеристик криптонозаполненных стеклопакетов, то данные Таблицы 2 показывают, что скорость звука в криптоне на 30% меньше, чем в аргоне и на 36%, чем в воздухе (зная, что затухание звуковой волны тем сильнее, чем меньше скорость звука в данной среде). Это обеспечивает б?льший коэффициент затухания звука в среде криптона и аргоно-криптоновых смесях по сравнению с чистым аргоном.

Параметры при Т=21 С° и давлении 0.1 МПа Криптон Kриптон +5% Aргон Kриптон +10% Aргон Kриптон +25% Aргон Kриптон +50% Aргон Aргон +25% Kриптон Аргон Воздух
Скорость звука, [м/с] 220.39 223.33 236.44 236.44 256.60 282.94 319.43 344.16

Конденсат - наиболее распространенная проблема, с которой приходится сталкиваться производителям окон и потребителям. Низкотемпературная технология получения криптона и аргона обеспечивает точку росы Т < -100 °С, что полностью исключает выпадение влаги в межстекольном пространстве.

Принятый государством курс на энергосбережение, приведет в ближайшее время к ужесточению региональных норм для жилых и административных зданий для всех регионов России без исключения. Это заставит производителей светопрозрачных конструкций применять новые типы стеклопакетов. Как видно из Таблицы 3, возможно применение криптонозаполненных стеклопакетов в сочетании с обычными стеклами во всех регионах России как дополнение применения низкоэмиссионных стекол, а в некоторых случаях - как альтернатива.

Например: использование криптона в стеклопакете 4М1-Kr10-4М1-Kr10-4М1 позволяет получить почти такое же значение сопротивления теплопередаче (R-фактора), как для стеклопакетов 4М1-16-4И (воздух), а для стеклопакета 4М1-Kr16-4И (криптон) в 1,3 раза более высокое значение.

Применение криптона актуально не только в регионах с холодным, но и с жарким климатом, где широко используется кондиционирование помещений.

           Газ Cопротивление теплопередаче(R-фактор) [м2*К/Вт]    Города России Региональная нормадля жилых зданий(R-фактор)[м2*К/Вт]                         (R-фактор)[м2*К/Вт] Рекомендуемые конфигурациистеклопакета для регионов РФ
4М1-10-4М1-10-4М1 4М1-16-4И Low-E
Криптон 0,57 0,78 Новосибирск 0,63 4М1-16Кr-4И (криптон)
Криптон + 5%Аргон 0,57 - Екатеринбург 0,60 4М1-16-4И (криптон+аргон)
Криптон + 10%Аргон 0,56 - Уфа 0,58 4М1-Ar16-4И (аргон)
Криптон + 25%Аргон 0,56 0,72 Москва 0,54 4М1-Kr10-4М1-Kr10-4М1 (криптон)4М1-Ar16-4И (аргон)
Криптон + 50%Аргон 0,55 0,70 Самара 0,55 4М1-Kr10-4М1-Kr10-4М1 (криптон)4М1-Ar16-4И (аргон)
Криптон + 75%Аргон 0,52 0,67 Саратов 0,52 4М1-10-4М1-10-4М1 (Kr50/Ar50)4М1-Ar16-4И (аргон)
Аргон 0,49 0,65
Воздух 0,47 0,59

В процессе общения с производителями стеклопакетов очень часто приходится слышать о том, что газ улетучивается со временем из межстекольного пространства. Недостоверную, неоправданную, неподтвержденную информацию можно встретить в некоторых регионально-отраслевых журналах. Образцы "компетентности" авторов изречений по этому вопросу приводить не будем. Проведение ресурсных испытаний на долговечность криптонозаполненных стеклопакетов показало, что после 50 циклов охлаждения-нагрева соответственно до температур -30°С и +60°С, воздействие ультрафиолетового облучения, капельно-жидкой влаги и умеренно агрессивных сред, изменение газового состава в межстекольном пространстве не выявлено.

В соответствии с ГОСТ 30779-2001 рассчитаны условные годы эксплуатации:

Ресурс = 7*(N/12) = 7*(50/12) = 29 лет

Ресурсные испытания на долговечность криптонозаполненных стеклопакетов доказали, что срок эксплуатации составляет 29 лет, что превосходит аналогичный показатель для аргонозаполненных стеклопакетов (20 лет)[1].

                                                                                                   Таблица 4

Сравнительные характеристики двух- и однокамерных стеклопакетов

Данные, приведенные в Таблице 4 показывают, что возможна и несомненно рациональна замена двухкамерных стеклопакетов с обычными стеклами однокамерными криптонозаполнеными с применением низкоэмиссионных стекол.

Возвращаясь к ответу на главный вопрос: Как сделать стеклопакет теплым, легким и тонким? - можно со всей уверенностью сказать, что сочетание заполнения межстекольного пространства криптоном с применением низкоэмиссионных стекол позволяет:

  • отказаться от применения двухкамерных стеклопакетов или существенно улучшить их характеристики;
  • уменьшить на 25% толщину стеклопакета;
  • снизить на 30% вес стеклопакета;
  • получить стеклопакеты с коэффициентом сопротивления теплопередачи 1 м2*К/Вт и выше (см. ниже результаты испытаний).

Особенно вышесказанное актуально для строительства высотных зданий с применением увеличенных толщин стекол с размерами 8 и 10 мм.[2]

  1. ↑ По результатам проведенных исследований стеклопакетов, наполненных криптоном и криптоно-аргоновыми смесями различного процентного содержания. компании ООО "Неоэнергия". Исследования проводятся совместно с НИИСК (Научно-исследовательским институтом строительных конструкций) г. Киева на базе лаборатории к.т.н. Г.Г.Фаренюка. Исследования еще не закончены, поэтому в настоящей статье мы приведем лишь некоторые их результаты. Исследования проводились с одно- и двухкамерными стеклопакетами с наиболее широко применяемыми формулами 4-16-4 и 4-10-4-10-4, изготовленными из стандартных стекол М1 производства Борского завода и стекол с low-E покрытием - K-стекла и И-стекла производства компаний "Pilkington" и "Guardian" соответственно. Межстекольное пространство заполнялось криптоном, криптоно-аргоновыми смесями, а также чистым аргоном и воздухом.
  2. ↑ Полный научно-технический отчет опубликован на сайте АПРОК в декабре 2004 года.

Шахнес Л.М.

Статья http://www.aprok.org/articles/article119.php

Петрина Оксана

www.wikipro.ru

Заполнение стеклопакета инертным газом. Возможности и преимущества

Из статьи Вы узнаете:

Конструкция любых современных окон предусматривает оснащение их стеклопакетами. На сегодняшний день существует множество разновидностей стеклопакетов, и одной из особенностей, отличающих их друг от друга, является наполнение внутренних камер.

Многим известно, что пространство между стеклами стеклопакета заполняют осушенным воздухом или специальным инертным газом, но лишь единицы знают для чего это делается и как влияет наполнитель на свойства стеклопакета.

Отечественные производители и продавцы редко посвящают покупателей в такие тонкости, считая эту информацию профессиональной, не влияющей на выбор клиента. Однако их мнение ошибочно, так как вид и качество наполнителя сильно отражаются на характеристиках стеклопакета.

Влияние межстекольного заполнителя на характеристики стеклопакета

Типы популярных стекол для стеклопакетов

Кроме осушенного воздуха, для заполнения стеклопакетов, чаще всего, применяют два вида инертных газов: аргон и криптон. При сравнении характеристик этих веществ, можно сделать следующие выводы:

  • Воздух обладает самой большой теплопроводностью – он хуже всех заполнителей сохраняет тепло.
  • Показатели теплопроводности аргона на 5-10% ниже, чем у воздуха – он является лучшим «сохранителем тепла».
  • Минимальная теплопроводность у криптона – этот газ выпускает наружу на 15-20% тепла меньше, чем воздух.

Теплопроводность газов-заполнителей напрямую влияет на уровень теплоизоляции стеклопакета. Минимальной теплоизоляцией обладают конструкции, заполненные воздухом, – окна с такими стеклопакетами самые дешевые. Максимальная теплоизоляция у окон, имеющих стеклопакеты с криптоном. По сравнению с воздухом, аргон и криптон хуже проводят звуки, а поэтому их звукоизолирующие свойства также выше.

Именно сюда - в камеры и закачивается инертный газ

Именно сюда — в камеры и закачивается инертный газ

Таким образом, если сохранение тепла и тишины в помещении для вас приоритетная задача, то стоит разориться и купить окно с хорошим газовым заполнением.

Инструмент для закачки газа

Инструмент для закачки газа

Владельцам новых окон стоит помнить о том, что инертные газы, заполняющие камеры стеклопакета, со временем улетучиваются. Происходит это постепенно, но через 8-10 лет, закаченный газ из стеклопакета, скорее всего, испарится полностью. Сильно расстраиваться по этому поводу не стоит – окно не выйдет из строя, а просто станет чуть хуже сохранять тепло и сильнее пропускать уличные звуки. В таком виде пластиковое окно, при правильном уходе и эксплуатации может служить своим владельцам не менее 50-60 лет.

Инертные газы для пластиковых окон – разновидности

Аргон

Российские и зарубежные производители для заполнения камер в стеклопакетах используют инертные газы следующих наименований:

  • Аргон
  • Криптон
  • Ксенон

Специфические свойства каждого вида влияют на частоту его использования в производстве.

Например, уровень теплоизоляции аргона существенно ниже, чем у других разновидностей газа, однако он является самым востребованным наполнителем для современных стеклопакетов. Почему? А потому что он имеет самую низкую цену.

Инертные газы

Среди производителей стеклопакетов и окон существует жесткая конкуренция, и каждая компания стремится свести свои затраты к минимуму, чтобы предложить интересные для покупателей цены. Заправка стеклопакета аргоном – идеальный вариант для качественных окон средней ценовой категории. Во-первых, характеристики конструкций выше, чем у дешевых окон с воздушным заполнением, а во-вторых, цена изделия доступна большинству покупателей.

Ксеноном или криптоном стеклопакеты заполняются редко – по индивидуальным заказам или при изготовлении конструкций, требующих максимального теплоизолирующего эффекта.

azaoknom.ru

Аргон теплопроводность жидкого - Энциклопедия по машиностроению XXL

Теплопроводность жидкого аргона и азота.  [c.309]

Теплопроводность Я 10 (вт/м град) аргона в жидком и газообразном состояниях [15]  [c.562]

Теплопроводность жидкого аргона на линии насыщения, вычисленная по уравнениям (52) и (53), приведена в табл. 11.  [c.56]

Таблица 11 Теплопроводность жидкого аргона на линии насыщения Таблица 11 Теплопроводность жидкого аргона на линии насыщения
Рис. 80. Теплопроводность X аргона в жидкой фазе. Рис. 80. Теплопроводность X аргона в жидкой фазе.
Теплопроводность жидких азота, кислорода и аргона, в отличие от вязкости, исследовалась преимущественно при давлениях, отличающихся от давления насыщения. Наибольшее число экспериментальных работ посвящено определению коэффициента теплопроводности азота.  [c.207]

VII.3. Расчет теплопроводности жидких азота, кислорода, аргона и воздуха  [c.216]

Рис. 34. Экспериментальные данные о теплопроводности жидкого аргона в координатах Рис. 34. Экспериментальные данные о теплопроводности жидкого аргона в координатах
Теплопроводность жидкого и газообразного аргона  [c.229]

Основными защитными газами, используемыми при сварке неплавящимся электродом, являются аргон и гелий. Для защиты сварочной ванны эти газы применяют в чистом виде или в виде смеси Аг—Не в любом соотношении. Значительные различия в плотности и теплопроводности аргона и гелия определяют особенности их защитных свойств, а также условий горения дуги. Аргон является более тяжелым газом, чем воздух. Прн истечении из сопла горелки струя аргона лучше защищает жидкий металл при сварке в нижнем положении. Растекаясь по поверхности свариваемого изделия, он продолжительное время защищает широкую зону расплавленного и нагретого до высоких температур металла.  [c.61]

Экспериментальные данные о термодинамических и транспортных свойствах жидкого воздуха и его компонентов в основном получены в последнее десятилетие и охватывают ограниченные области изменения параметров. В настоящей работе опытные термические данные для жидких кислорода, аргона и воздуха экстраполированы до давления 500 бар. Это позволило составить уравнения состояния, справедливые в интересующем технику интервале давлений, и рассчитать термические и калорические свойства указанных веществ в области изменения параметров, не исследованной экспериментально. Полученные значения плотности были использованы также при составлении таблиц значений вязкости и теплопроводности четырех жидкостей на основании ограниченного экспериментального материала, относящегося к коэффициентам переноса. Таким образом, исследование позволило получить весь комплекс данных о термодинамических и транспортных свойствах жидкого воздуха и его компонентов в наиболее важном для практических целей диапазоне давлений — вплоть до кривых насыщения и затвердевания.  [c.4]

В упомянутой выше работе Кейса [258], где измерена теплопроводность семи газов и жидкостей методом коаксиальных цилиндров, получено пять значений X жидкого аргона в интервале температур —186,3-ь ь—161,3° С и давлений 2,2—10,2 атм.  [c.214]

Из анализа экспериментальных данных о теплопроводности компонентов воздуха в жидком состоянии видно, что только данные об азоте и аргоне относятся ко всему диапазону давлений, для которого в настоящей работе составляются таблицы теплофизических свойств. Для кислорода данные ограничены давлением 136 атм, а для воздуха вообще отсутствуют, что существенно усложняет расчет значений Я этих жидкостей. Поэтому в VII.3 рассматриваются методы расчета теплопроводности жидкостей иа основании ограниченного числа экспериментальных данных с целью получения соответствующих уравнений и расчета теплопроводности исследуемых веществ в широкой области температур и давлений.  [c.215]

При низких температурах были измерены теплопроводности следующих ожижепных газов жидкого аргона и азота Улиром [54], жидкого кислорода в узком температурном интервале Просадом [55] и жидкого Не 1 Гренье [56] и Бауэрсом [57]. Определение теплопроводности жидкого Не II между 0,6°К и Х-точкой определяется циркуляцией сверхтекучей и нормальной компонент и представляет собой отдельную задачу (см. гл. X).  [c.256]

Аргон, поверхностное натяжение 564 —, скорость звука 557, 558 —, теплопроводность жидкого и газообразного 561—563, 679, 682 —, термодинамические свойства на линии насьпцения 543, 544 —,-- при различных температурах и давлениях 544—557 Арохлор-1428 см. Тетрахлордифенил Ацетилен газообразный, вязкость  [c.716]

Теплопроводность жидкого и газообразного азота и аргона исследовали также Цибланд и Бартон [255] данные об азоте получены примерно в том же интервале температур (80,7—202,5° К), что и в работе Юлира, но в более широком интервале давлений (1 — 134 атм). В работе [255] использована экспериментальная установка, созданная по методу коаксиальных цилиндров и подробно описанная авторами ранее [256]. Внутренний цилиндр изготовлен из серебра, длина его 100 мм и наружный диаметр 32,84 мм внешний цилиндр выполнен из меди, внутренний диаметр его 33,33 мм. Центровка их осуществлялась с помощью шести стеклянных штифтов. По торцам внутреннего цил1шдра расположены охранные нагреватели, имеющие тот же диаметр и длину 43 мм каждый. Постоянная установки определена при температуре 20" С, а для других температур пересчитывалась с помощью известных коэфф1Щиентов термического расширения материалов цилиндров погрешность определения постоянной не превышала 0,5%. Разность температур между цилиндрами измерялась термопарами медь—константан и составляла в опытах с азотом 0,48—6,0 град. В работе [255] установка была снабжена системой автоматического регулирования температуры, что позволило поддерживать тем-  [c.209]

Довольно подробные экспериментальные данные о теплопроводности жидкого аргона получены в работах Юлира [254] и Цибланда и Бартона [255], рассмотренных ранее при анализе данных о жидком азоте. Юлир измерил теплопроводность аргона в интервале температур 86,6— 193,8° К и давлений 0,98—96,1 атм. Исследованный аргон содержал в качестве примесей до 0,4% азота. Опытные данные Юлира представлены на девяти изобарах в виде таблицы и графика, построенного в координатах л, Т из приведенных 66 опытных точек к жидкой фазе относятся 37. В работе [254] перепады температур были небольшими, однако в околокритической области не исключена возможность влияния конвекции на результаты эксперимента, и погрешность опытных данных в этой области могла превысить указанную автором величину 2,5%.  [c.214]

Теплопроводность X жидкого аргона на линии насьпцения [15]  [c.563]

Возможно, одпако, что теория, учитывающая вязкость и теплопроводность, может дать согласующиеся с экспериментом результаты во всем интервале частот, например для сжиженных инертных газов, т. е. в случаях, когда отсутствуют другие причины диссипации. Такое сравнение до настоящего времени не проводилось, так как число измерений на жидкостях этого типа ограничено. Помимо нескольких значений, полученных только при одной температуре и одной частоте Галтом [32], мы располагаем результатами последних исследований Ногли [58] в жидком аргоне эта жидкость была изучена при давлениях вплоть до 10 атм в частотном интервале 30—70 МГц и при различных температурах. На фиг. 8 приведены кривые температурной зависимости параметра a/v при 8 атм в исследованном частотном интервале он имеет постоянную величину. Пунктирной линией изображено поглощение, получающееся по классической теории. Таким образом, установлено, что в сжиженных инертных газах поглощение существенно превышает классическое  [c.172]

mash-xxl.info