Способ дуговой сварки штучным покрытым электродом. Ручная дуговая сварка штучным электродом


Способ дуговой сварки штучным покрытым электродом

Изобретение относится к области сварки, осуществляемой штучными покрытыми электродами. При данном способе сварки обеспечивают постоянную скорость плавления электрода во времени, а плотность тока дуги J во времени t регулируют в соответствии с формулой

где β - коэффициент пропорциональности, равный β = (Aк - A0)/tэJ0, A0 - начальное значение коэффициента расплавления электрода, Aк - конечное значение коэффициента расплавления электрода, J0 - начальное значение плотности тока на электроде при зажигании дуги, tэ - время полного сгорания электрода при плотности тока на электроде J0. Использование изобретения позволяет увеличить производительность сварки. 1 ил.

 

Предлагаемый способ относится преимущественно к машиностроению и строительству и может использоваться при ручной сварке и наплавке деталей металлическим плавящимся штучным покрытым электродом.

Известен способ ручной дуговой сварки штучным покрытым электродом, по которому устанавливают сварочный ток, исходя из диаметра стержня, свойств и диаметра покрытия, и осуществляют сварку или наплавку. Сварочный ток в процессе сварки не регулируют, а электрод подают в зону сварки с переменной скоростью, соответствующей скорости его расплавления (см. «Сварка и резка материалов» под ред. Ю.В. Казакова. М.: Академия. - 2010, с.120).

Недостатком данного способа является неравномерная скорость расплавления электрода, обусловленная нагревом электрода в его вылете. Вылет электрода изменяется от максимального в начале горения дуги до минимального в конце расплавления электрода. К концу сварки электрод нагревается в вылете все больше, что приводит к увеличению скорости его плавления. Вследствие этого покрытие может перегреваться и отслаиваться от стержня. Возникает опасность появления дефектов в шве типа натеков и наплывов, т.к. не обеспечивая должного провара основного металла, допускается попадание в шов большого количества наплавленного металла. Чтобы избежать этих недостатков, приходится снижать ток на электрод с самого начала горения дуги. Это приводит к снижению производительности ручной дуговой сварки.

Сварщик при сварке таким способом вынужден подавать электрод в шов с переменной скоростью и постепенно увеличивать скорость перемещения электрода вдоль шва (скорость сварки), чтобы обеспечить равномерную ширину валика по его длине, что требует высокой квалификации сварщика.

Последний недостаток устраняется в способе сварки наклонным электродом, (см. то же издание, с.123). При сварке электрод закрепляют в штативе, устанавливаемом на поверхность изделия, через изолирующую подкладку; по мере его оплавления он опускается с обоймой под действием веса. Глубину проплавления и ширину шва регулируют изменением угла наклона электрода. Однако этот способ, обеспечивая соответствие скорости подачи электрода скорости его расплавления, связанные с ручным характером процесса, не позволяет повысить скорость расплавления электрода в процессе сварки.

Техническим результатом предлагаемого способа является расширение технологических возможностей дуговой сварки штучными покрытыми металлическими электродами, повышение производительности расплавления электрода.

Сущность предлагаемого способа дуговой сварки металлическим плавящимся штучным покрытым электродом, по которому электрод подают в зону сварки со скоростью, соответствующей скорости его расплавления, заключается в том, что сварочный ток в процессе расплавления электрода регулируют, причем зависимость регулирования тока в процессе его расплавления определяют по зависимости скорости расплавления электрода при сварке без регулирования тока.

Зависимость изменения тока во времени в процессе расплавления электрода I(t) выбирают, например, такой, чтобы электрод во время горения дуги t расплавлялся с постоянной скоростью

где A0 - коэффициент расплавления электрода в начальный момент зажигания дуги на электроде; J0 - начальное значение плотности тока на электроде; β - коэффициент, определяемый экспериментально по зависимости длины сгоревшей части электрода от времени горения дуги при отсутствии регулирования тока дуги.

В этом случае начальное значение тока может быть выбрано существенно большим, чем в известном способе, что обеспечивает повышение средней скорости расплавления электрода в процессе сварки.

На фиг.1 показаны зависимости изменения скорости плавления электрода Vпл в случае отсутствия регулирования тока дуги (кривая 1) и при регулировании тока (кривая 2).

Зависимость коэффициента расплавления в процессе плавления электрода в некоторый момент времени t можно записать в виде

где ΔA приращение коэффициента расплавления от нагрева электрода в вылете; A0 - коэффициент расплавления в начальный момент зажигания дуги.

Приращение коэффициента расплавления электрода к данному моменту времени пропорционально времени его действия, плотности тока на электроде дуги и его можно представить в виде

где β - коэффициент пропорциональности, зависящий от диаметра электрода, толщины и свойств покрытия.

Подставив (3) в (2), получим

Скорость расплавления электрода Vэ и коэффициент расплавления Ар связаны известным соотношением

где J - плотность тока дуги, А/см2; ρ - плотность металла стержня, г/см3. Коэффициент расплавления Ар в этом случае измеряется в г/(А·с). Здесь А - ток дуги в амперах, с - время в секундах.

Определить скорость расплавления для данного момента времени можно, умножив левую и правую части выражения (4) на множитель J/ρ

Сократив множитель J/ρ, потребуем, чтобы левая часть оставалась постоянной, равной начальной скорости в момент, равный нулю.

Это возможно, если принять в левой части уравнения плотность тока J0 на электроде и коэффициент расплавления A0 в начальный момент его плавления.

Получаем полное квадратное уравнение относительно плотности тока J

Решение этого уравнения

В момент времени t=0 коэффициент расплавления равен начальному, а ток имеет начальное значение J0.

Таким образом, получили зависимость плотности тока от времени, которая обеспечит постоянство скорости расплавления электрода.

Для отыскания коэффициентов уравнения (9) необходимо определить характеристику начальной скорости плавления электрода A0·J0 и коэффициент пропорциональности β. Для определения β следует определить скорость плавления электрода для какого либо момента времени при постоянном токе дуги. Для расчета β следует использовать выражение (4). β можно определить по зависимости длины сгоревшей части от времени сгорания электрода.

Начальный ток дуги при условии его регулирования для повышения производительности расплавления электрода выбирается на основе значения скорости расплавления электрода в конце его сгорания без регулирования. То есть начальный ток при регулировании выбирается таким, чтобы обеспечить начальную скорость расплавления, равную скорости расплавления в конце его сгорания для случая без регулирования тока. В этом случае обеспечивается повышение производительности расплавления электрода до 15% от способа сварки без регулирования тока.

На фиг.1 показано изменение скорости расплавления электрода от времени горения дуги. Кривая 1 показывает зависимость скорости сгорания в случае отсутствия регулирования тока. Прямая 2, параллельная оси времени t, показывает скорость сгорания в случае регулирования тока дуги. На кривой 1 V0 - начальная скорость расплавления электрода по прототипу без регулирования тока дуги. Начальная скорость сгорания для случая с регулированием тока дуги равна скорости сгорания Vк в конце сгорания электрода при отсутствии регулирования. Площадь под кривой 1 до момента полного сгорания электрода t1 характеризует длину сгоревшей части электрода. Площадь под прямой 2 также характеризует длину сгоревшего участка при регулировании тока дуги до времени полного расплавления электрода t2.

Поскольку длины расплавившейся части электрода к концу процесса должны быть одинаковы, можно записать

где t2 и t1 - соответственно время сгорания электрода при регулировании тока дуги и в отсутствие регулирования. Отсюда отношение времени t2/t1

Так если V0/Vк=0,8, то получим сокращение времени сгорания электрода в 0,9 раза. При времени сгорания без регулирования t1=80 с получим экономию времени 8 с. В этом случае производительность расплавления увеличится на 10%.

Зависимость регулирования тока дуги для выбранной марки, диаметра и длины электрода, обеспечивающую постоянство скорости расплавления электрода, определяют следующим образом.

Пример.

Для электрода с основным покрытием марки СЗСМ диаметром 4 мм при токе 167 А на обратной полярности определили время, за которое расплавляются участки длиной с интервалом 50 мм. Полученные данные аппроксимировали с помощью компьютерной программы по методу наименьших квадратов и получили зависимость длины расплавленного участка от времени Lc(t) вида

где L0 - длина сгоревшего участка в начальный момент времени; B1 и B2 - коэффициенты аппроксимации.

Скорость расплавления из формулы (10) можно найти, взяв производную dLc/dt

Формула (11) аналогична формуле (4), так как коэффициент расплавления и скорость подачи связаны пропорциональной зависимостью (5). Данные опытов и расчетов приведены в табл.1

Таблица 1
№ опыта 1 2 3 4 5 6 7 8
Время горения дуги, сек 0 24 35 47 54 66 76 84
Расплавленная длина электрода, см 0 10 15 20 25 30 35 40
Расчетная длина, см 0,017 10,02 14,98 20,64 24,06 30,14 35,41 39,76
Отклонение, % 0 0 +3,2 -3,76 +0.4 +1,2 -0,6

При определении коэффициентов аппроксимирующей формулы к экспериментальным данным использовали еще одну дополнительную точку, так как понятно, что длина сгоревшего участка при t=0 L0(0)=0. В результате получили значения коэффициентов в формулах (10) и (11): L0=1,69·10-2; B1=0,396 см/с; B2=9,22·10-4 см/с2.

Расчетные данные по длине сгоревшей части электрода совпадают по абсолютной величине с опытными значениями с точностью 1,3%.

С помощью формулы (11) получили зависимость скорости сгорания электрода от длины сгоревшей части, приведенные в табл.2.

Таблица 2
№ опыта 1 2 3 4 5 6 7 8
Время горения дуги, сек. 0 24 35 47 54 66 76 84
Расплавленная расчетная длина электрода, см 0 10,02 14,98 20,64 24,06 30,14 35,41 39,76
Скорость плавления, см/с 0,396 0,440 0,460 0,483 0,496 0,518 0,536 0,551

Приращение скорости к концу сгорания электрода составило ΔV=0,155 см/с, а конечная скорость Vк=0,551 см/с.

Рассчитываем плотность тока в электроде в случае отсутствия регулирования тока J01=167/0,1256=1330 А/см2. Тогда начальный коэффициент расплавления электрода А01

Рассчитываем новое значение начального тока, обеспечивающее начальную скорость расплавления, равную конечной скорости при постоянном токе из соотношения

где Vк=0,551 см/с - конечная скорость сгорания электрода без регулирования тока на токе дуги 167 A; A01 - начальный коэффициент расплавления электрода при зажигании дуги. Получаем J02=1869 А/см2. Этой плотности тока соответствует начальный ток I2=1869·0,1256=235 А. Конечный коэффициент расплавления А02=0,32 г/(А·с).

Рассчитываем значение коэффициента β с помощью формулы (4)

0,32=0,23+β·84·1330.

Отсюда β=8,06·10-7.

Подставив полученные значение J02 и β в уравнение (9), отыскиваем требуемую зависимость плотности тока от времени (табл.3). Начальное и постоянное значение скорости расплавления электрода V2=0,551 см/с. Оно дает уменьшение времени сгорания электрода с 84 до 72,6 сек, т.е. на 13,6%

Таблица 3
t, сек 0 10 20 30 40 50 60 70 72,6
J(t)A/см2 1850 1771 1704 1645 1594 1548 1507 1469 1460

С помощью специального электронного устройства, встроенного в источник питания, осуществляли регулирование сварочного тока по полученной зависимости. Начальный ток составлял 235 А, конечный 183 А. Время сгорания электрода составило 70 секунд.

Таким образом, с помощью данного способа можно повысить скорость расплавления электрода без опасности его перегрева.

Способ может быть осуществлен с помощью устройств, конструкция которых будет зависеть от конструкции сварочного источника питания для сварки покрытыми штучными электродами.

Способ ручной дуговой сварки штучным покрытым электродом, включающий подачу электрода в сварочную ванну в соответствии со скоростью его плавления, отличающийся тем, что обеспечивают постоянную скорость плавления электрода во времени, при этом плотность тока дуги во времени регулируют в соответствии с формулойгдеJ - плотность тока дуги,t - текущее время,β - коэффициент пропорциональности, равный β = (Ак - А0) / tэ J0, Ак - конечное значение коэффициента расплавления электрода,А0 - начальное значение коэффициента расплавления электрода,tэ - время полного сгорания электрода при плотности тока на электроде J0,J0 - начальное значение плотности тока на электроде при зажигании дуги.

www.findpatent.ru

история создания и основные способы применения

История создания, метод работы и принцип работы  с различными металлами с использованием сварочной дуги был известен еще в XIX веке.

Русский физик Василий Петров создал условия для функционирования устойчивого электрического разряда (1802). В дальнейшем его идеи сварки использовал на практике другой наш соотечественник – Николай Бенардос. Ему удалось соединить металлические части эл дугой, которую создавали между собой неплавящийся угольный электрод и свариваемое плавлением изделие (1882).

Основной шов

Дуговая сварка это основа основ соединения металла

Уже первый сварочный агрегат обеспечивал подачу газа для эффективного процесса, где взаимодействовали два электрода или один электрод и обрабатываемая с его помощью деталь.

Развитие дуговой сварки

Следующим этапом исторического развития дуговой сварки стали опыты русского инженера Николая Славянова. Произошла замена неплавящегося угольного электрода на металлический, который плавился и исключал необходимость в отдельном присадочном металле (1888).

Эти открытия русских испытателей и стали той основой, на которой построено современное производство агрегатов для дуговой сварки во всем мире. Все, что происходило в дальнейшем, шло по путям:

  • изыскания защитных средств и способов обработки расплавляемого для сварки металла;
  • автоматизации различных способов сварочного процесса.

Способов защиты к настоящему времени известно несколько:

  • газовая,
  • газошлаковая,
  • шлаковая.

Автоматизация сварки, в том или ином виде позволяет классифицировать ее на три основные группы:

  • полностью автоматическая,
  • механизированная,
  • ручная.

Используемый эл разряд должен иметь нужную продолжительность. Для этого применяется специальный источник питания дуги (для краткости написания используется аббревиатура ИПД). Поэтому в формате переменного тока используется сварочный трансформатор, а если ток постоянный – генератор или выпрямитель.

Разновидности дуговой сварки

Сварка с использованием покрытых электродов

Весь сварочный процесс при этом идет ручным способом, плавлением обрабатываемой поверхности. Предполагается использование плавящихся и неплавящихся электродов. Из первой группы предпочтение отдается:

  • алюминиевым,
  • медным,
  • стальным

электродам и некоторым другим, в зависимости от конкретных параметров сварки. Из второй группы характерно использование:

  • вольфрамовых,
  • графитовых,
  • угольных

электродов различного диаметра.

Чаще всего в ход идут стальные электроды. При этом осуществляются:

  • подача электрода в район места предполагаемого процесса,
  • процесс перемещения сварочной дуги по всей длине обрабатываемой поверхности детали, на которой плавлением образуется шов.

Этот способ соединения деталей электрической дугой входит в число самых распространенных. Он выгодно отличается от остальных тем, что предельно прост и универсален, когда сварочный аппарат используется для изготовления конструкций различного профиля. Отлично зарекомендовал себя данный способ в случаях, когда необходимо работать:

  • в горизонтальном, вертикальном положении или вести сварочные работы под углом;
  • в местах, куда бывает трудно обеспечить нормальный доступ.

К числу недостатков следует отнести:

  • малую производительность этого вида дуговой сварки,
  • прямую зависимость результатов труда от профессионализма специалиста, выполняющего данную работу.
Работа сварщика

Дуговая сварка не плавящимся электродом в среде аргона

Сварка при помощи штучных электродов

В современной терминологии этот процесс дуговой сварки называется ММА. Это англоязычное название (от Manual Metal Arc), в наших учебных пособиях и инструкциях иногда применяется аббревиатура РДС. При этом способе эл ток в постоянном или переменном формате подводится на электрод и свариваемую деталь.

Дуга естественным плавлением обрабатывает электрод и поверхность детали. При этом электрод образует отдельными каплями материал для смешивания с расплавляемой поверхностью детали. Глубина проплавления регулируется сварщиком и зависит от того, каковыми являются:

  • сила подаваемого эл тока,
  • диаметр используемого электрода,
  • положение (вертикальное, угловое или горизонтальное) сварки,
  • скорость перемещения сварочной дуги по обрабатываемой площади предполагаемого шва,
  • вид соединения (одинарный, двойной и так далее),
  • форма и размеры обрабатываемой кромки детали

и другие факторы, влияющие на процесс сварки.

Отдельно можно рассмотреть процесс зажигания и поддержания дуги, установку необходимых параметров сварочного тока. Однако в большинстве случаев при сварке используется аппарат в виде инвертора, где эти функции прописываются отдельно, в прилагаемой инструкции, применительно к каждой модели и диаметру используемого электрода.

Дуговая сварка под флюсом

Наиболее часто этот способ используется в промышленных отраслях, когда есть необходимость в сварке изделий, содержащих:

  • различные сплавы,
  • сталь,
  • цветные металлы,

поскольку этот способ:

  • высокопроизводителен,
  • отличается отменным качеством работ и стабильным соединением свариваемых поверхностей,
  • заметно улучшает условия трудового процесса,
  • значительно меньше расходует эл энергии и материалов для сварки.
Разновидность работы с металлом

Дуговая сварка под флюсом

В углекислом газе предполагается наличие смесей с инертными/активными газами, для создания максимальной эффективности горения дуги. Недостатком (и весьма существенным) данного способа специалисты считают ограниченность положений для ведения работ. Поскольку отклонение от горизонтального даже на 10 градусов приводит к стеканию флюса и металла, сварочный процесс можно осуществлять только в положении снизу.

Этот способ используется в режиме однодуговой сварки, при котором используется один электрод. При этом происходит горение сварочной дуги между подаваемой проволокой (играющей роль электрода) и деталью (свариваемой поверхностью), которая находится под слоем флюса. Постепенным плавлением флюса, в образуемом при этом газе происходит образование полости (так называемый газовый пузырь), где и обеспечивается горение дуговой сварки.

Этот вид сварки возможен, как в режиме переменного тока, так и при постоянном токе. Иногда используется двухдуговая или многодуговая сварка, при этом аппарат для подачи питания может быть один или несколько.

Способ ручной дуговой сварки TIG

Такой способ возможен при использовании неплавящегося электрода в защитном инертном и углекислом газе, образующих эффективно действующую смесь. Современный метод сварки TIG закладывается в качестве одной из функций практически во всех новинках инверторов.

Любой аппарат XXI века обладает ей, в совокупности с другими вспомогательными функциями. Расшифровывается эта аббревиатура, как Tungsten Inert Gas, а поскольку лучший неплавящийся материал – это вольфрам, то зачастую можно встретить аббревиатуру WIG. Она обозначает Wolfram Inert Gas. Есть также обозначение GTA, то есть Gas Tungsten Arc.

При этом способе происходит ручная или автоматическая подача проволоки, играющей роль электрода. В любом случае, в углекислом газе смешивается один из инертных газов, чаще всего аргон. Поэтому такую сварку называют еще аргонно-дуговой (АДС). Помимо аргона применяются также:

  • всевозможные газовые смеси,
  • азот,
  • гелий,

а иногда используется атомно-водородная сварка, похожая на сварку TIG. С момента открытия преимуществ сварки в углекислом газе и его смесях с инертными газами этот способ стал широко использоваться в промышленных отраслях. При этом дуговая сварка плавлением обрабатываемой поверхности неплавящимся электродом может производиться во всех трех указанных выше режимах, начиная от ручного режима и заканчивая режимом автоматическим. Используемый сварочный аппарат позволяет применять все виды электродов, начиная от самого тонкого и заканчивая самыми толстыми.

Дуговая сварка в режиме MIG/MAG. Это сварка с использованием плавящегося электрода. Она также производится в углекислом газе со всевозможными инертными/активными газами:

  • азотом,
  • гелием,
  • кислородом,
  • аргоном

и другими.

При этом, соединяясь в углекислом газе, эти дополнительные компоненты образуют наиболее эффективную смесь для полноценного поддержания дуговой сварки, происходящей плавлением электрода и обрабатываемой детали. Этот современный метод также поддерживает любой аппарат из числа имеющихся на российском рынке сварочных инверторов. Использование различных смесей с углекислым газом необходимо соотносить с конкретными параметрами предполагаемого технического задания.

zavarimne.ru

Дуговая сварка металлоконструкций штучными электродами 2

Большое влияние на производительность и качество сварного шва и соединения оказывает режим сварки.

Режимом сварки называют совокупность основных характеристик сварочного процесса, обеспечивающих получение сварных швов заданных размеров, формы и качества.

При ручной дуговой сварке режим определяется диаметром электрода, величиной сварочного тока, напряжением на дуге, скоростью перемещения электрода (скоростью сварки), родом и полярностью тока, положением шва в пространстве.

Диаметр электрода при сварке стыковых швов в нижнем положении устанавливается по толщине свариваемого металла и выбирается в такой зависимости: при сварке металла толщиной до 4 мм диаметр электрода может быть равен толщине металла и менее; при сварке металла толщиной до 15 мм применяют электроды диаметром 4—5 мм; металл большей толщины допускается варить электродами большего диаметра или пучком электродов имеющихся в распоряжении диаметров.

Первый слой при сварке многослойных швов выполняется электродами диаметром не более 3—4 мм.

Угловые швы за один проход могут свариваться катетом не более 8 мм. При необходимости выполнить катет большей величины применяют многослойную сварку. Обычно при ручной дуговой сварке получают шов сечением до 40 мм2 за один проход.

Величина сварочного тока ориентировочно берется равной 40—50 диаметрам электрода, т. е. для сварки электродами диаметром 4 мм сварочный ток следует брать в пределах от 160 до 200 А.

Минимальная величина сварочного тока определяется устойчивостью горения дуги. Для повышения производительности процесса сварки целесообразно применять максимально допустимый для данного типа электродов сварочный ток.

Напряжение на дуге при ручной дуговой сварке колеблется в узких пределах и при назначении режимов сварки не регламентируется. Скорость сварки выбирают такую, при которой можно получить шов требуемого поперечного сечения. Род и полярность тока выбирают в зависимости от свариваемого металла и типа применяемых электродов.

Металл небольшой толщины сваривают на постоянном токе обратной полярности (плюс на электроде), так как температура на аноде выше, чем на катоде, а следовательно, на аноде выделяется большее количество тепла. Этим уменьшается вероятность образования прожогов и перегрева металла.

Низкоуглеродистые и низколегированные конструкционные стали средней и большой толщины экономичнее сваривать на переменном токе. Это снижает расход электроэнергии и позволяет использовать сварочное оборудование меньшей стоимости.

Для повышения производительности труда при ручной дуговой сварке используют ряд приемов, которые помогают сократить основное время путем уменьшения площади поперечного сечения шва, увеличения коэффициента наплавки и сварочного тока.

При определенной толщине свариваемых деталей площадь поперечного сечения шва зависит от размеров и формы разделки. Поэтому форму подготовки кромок следует выбирать такую, которая позволяет получить требуемое качество соединения при минимальной площади поперечного сечения сварного шва.

Увеличение коэффициента наплавки можно получить за счет выбора соответствующих электродов (например, с железным порошком в обмазке).

Для увеличения скорости сварки применяют сварку с глубоким проплавлением. Для этой цели используют электроды с увеличенной толщиной покрытия. Покрытие плавится медленнее, чем стержень, поэтому на конце электрода получается глубокий чехольчик, опирающийся при сварке на основной металл и концентрирующий мощность дуги в минимальном его объеме.

Электрод наклоняют под углом 15—20° к вертикали для лучшего вытеснения металла из кратера. Сварку ведут без колебательных движений электродом. Сварочный ток допускается повышать на 20—30 %, что одновременно с укорочением сварочной дуги позволяет увеличить скорость сварки более чем в 1,5 раза по сравнению со сваркой обычным способом.

www.stroitelstvo-new.ru