КРАТКАЯ ИСТОРИЧЕСКАЯ СПРАВКА О РАЗВИТИИ СВАРОЧНОЙ ТЕХНИКИ В СУДОСТРОЕНИИ. История развития сварки кратко


Краткая историческая справка о развитии сварки в мире и в России в частности

Введение

В 1802 году впервые в мире профессор физики Санкт-Петербургской медико-хирургической академии В.В.Петров (1761-1834гг.) открыл электрическую дугу и описал явления, происходящие в ней, а также указал на возможность её практического применения. В 1881 году русский изобретатель Н.Н.Бенардос (1842-1905гг.) применил электрическую дугу для соединения и разъединения стали. Дуга Н.Н. Бенардоса горела между угольным электродом и свариваемым металлом. Присадочным прутком для образования шва служила стальная проволока. В качестве источника электрической энергии использовались аккумуляторные батареи. Сварка, предложенная Н.Н. Бенардосом, применялась в России в мастерских Риго-Орловской железной дороги при ремонте подвижного состава. Н.Н. Бенардосом были открыты и другие виды сварки: контактная точечная сварка, дуговая сварка несколькими электродами в защитном газе, а также механизированная подача электрода в дугу. В 1888 году русский инженер Н.Г.Славянов (1854-1897гг.) предложил дуговую сварку плавящимся металлическим электродом. Он разработал научные основы дуговой сварки, применил флюс для защиты металла сварочной ванны от воздействия воздуха, предложил наплавку и сварку чугуна. Н.Г.Славянов изготовил сварочный генератор своей конструкции и организовал первый в мире электросварочный цех в Пермских пушечных мастерских, где работал с 1883 по 1897г. Н.Н.Бенардос и Н.Г.Славянов положили начало автоматизации сварочных процессов. Однако в условиях царской России их изобретения не нашли большого применения. Только после Великой Октябрьской социалистической революции сварка получает распространение в нашей стране. Уже в начале 20-х гг. под руководством профессора В.П.Вологдина на Дальнем Востоке производили ремонт судов дуговой сваркой, а также изготовление сварных котлом, а несколько позже – сварку судов и ответственных конструкций.Развитие и промышленное применение сварки требовало разработки и изготовления надёжных источников питания, обеспечивающих устойчивой горение дуги. Такое оборудование – сварочный генератор СМ-1 и сварочный трансформатор с нормальным магнитным рассеянием СТ-2 – было изготовлено впервые в 1924 году Ленинградским заводом «Электрик». В том же году советский учёный В.П. Никитин разработал принципиально новую схему сварочного трансформатора типа СТН. Выпуск таких трансформаторов заводом «Электрик» начал с 1927г. В 1928 году учёный Д.А. Дульчевский изобрёл автоматическую сварку под флюсом.Новый этап в развитии сварки относится к концу 30-ых годов, когда коллективом института электросварки АН УССР под руководством академика Е.О.Патона был разработан промышленный способ автоматической сварки под флюсом. Внедрение его в производство началось с 1940г. Сварка под флюсом сыграла огромную роль в годы войны при производстве танков, самоходных орудий и авиабомб. Позднее был разработан способ полуавтоматической сварки под флюсом.В конце 40-ых годов получила промышленное применение сварка в защитном газе. Коллективами Центрального научно-исследовательского института технологий машиностроения и Института электросварки имени Е.О. Патонова разработана и в 1952 году внедрена полуавтоматическая сварка в углекислом газе.Огромным достижением сварочной техники явилась разработка коллективом ИЭС в 1949 году электрошлаковой сварки, позволяющей сваривать металлы практически любой толщины.Авторы сварки в углекислом газе плавящимся электродом и электрошлаковой сварки К.М. Новожилив, Г.З. Волошкевич, К.В.Любавский и др. удостоены Ленинской премии.В последующие годы в стране стали применяться: сварка ультразвуком, электронно-лучевая, плазменная, диффузионная, холодная сварка, сварка трением и др. Большой вклад в развитие сварки внесли учёные нашей страны: В.П.Вологдин, В.П.Никитин, Д.А. Дульчевский, Е.О. Патонов, а также коллективы Института электросварки имени Е.О. Патонова, Центрального научно-исследовательского института технологии машиностроения, Всесоюзного научно-исследовательского и конструктивного института автогенного машиностроения, Института металлургии имени А.А. Байкова, ленинградского завода «Электрик» и др.Сварка во многих случаях заменила такие трудоёмкие процессы изготовления конструкций, как клёпка и литьё, соединение на резьбе и ковка. Преимущество сварки перед этими процессами следующие:

• экономия металла – 10...30% и более в зависимости от сложности конструкции• уменьшение трудоёмкости работ, сокращение сроков работ и уменьшение их стоимости• удешевление оборудования• возможность механизации и автоматизации сварочного процесса • возможность использования наплавки для восстановления изношенных деталей• герметичность сварных соединений выше, чем клепаных или резьбовых• уменьшение производственного шума и улучшение условий труда рабочих

Виды сварки.Сварка плавлением осуществляется при нагреве сильным концентрированным источником тепла (электрической дугой, плазмой и др.) кромок свариваемых деталей, в результате чего кромки в месте соединения расплавляются, самопроизвольно сливаются, образуя общую сварочную ванну, в которой происходят некоторые физические и химические процессы.Сварка давлением осуществляется пластическим деформированием металла в месте соединения под действием сжимающих усилий. В результате различные загрязнения и окислы на свариваемых поверхностях вытесняются наружу, а чистые поверхности сближаются по всему сечению на расстояние атомного сцепления.

Основные виды сварки:

Ручная дуговая сварка осуществляется покрытыми металлическими электродами. К электроду и свариваемому металлу подводится переменный или постоянный ток, в результате чего возникает дуга, постоянную длину которой необходимо поддерживать на протяжении всего процесса сварки. Дуговая сварка под флюсом. Сущность сварки состоит в том, что дуга горит под слоем сварочного флюса между концом голой электродной проволоки. При горении дуги и плавлении флюса создаётся газошлаковая оболочка, препятствующая отрицательному воздействию атмосферного воздуха на качество сварного соединения. Дуговая сварка в защитном газе производится как неплавящимся (чаще вольфрамовым), так и плавящимся электродам. При сварке неплавящимся электродом дуга горит между электродом и свариваемым металлом в защитном инертном газе. Сварочная проволока вводится в зону сварки со стороны. Сварка плавящимся электродам выполняется на полуавтоматах и автоматах. Дуга в данном случае возникает между непрерывно подающейся голой проволокой и свариваемым металлом. В качестве защитных газов применяют инертные (аргон, гелий, азот) и активные газы (углекислый газ, водород, кислород), а также смеси аргона с гелием, либо углекислым газом, либо кислородом; углекислого газа с кислородом и др. Газовая сварка осуществляется путём нагрева до расплавления свариваемых кромок и сварочной проволоки высокотемпературным газокислородным пламенем от сварочной горелки. В качестве горючего газа применяется ацетилен и его заменители (пропан-бутан, природный газ, пары жидких горючих и др.) Электрошлаковая сварка применяется для соединения изделий любой толщины в вертикальном положении. Листы устанавливают с зазором между свариваемыми кромками. В зону сварки подают проволоку и флюс. Дуга горит только в начале процесса. В дальнейшем после расплавления определённого количества флюса дуга гаснет, и ток проходит через расплавленный шлак. Контактная сварка осуществляется при нагреве деталей электрическим током и их пластической деформации (сдавливании) в месте нагрева. Местный нагрев достигается за счёт сопротивления электрическому току свариваемых деталей в месте их контакта. Существует несколько видов контактной сварки, отличающихся формой сварного соединения, технологическими особенностями, способами подвода тока и питания электроэнергией. Виды контактной сварки:

• стыковой контактной сварке свариваемые части соединяют по поверхности стыкуемых торцов.• точечной контактной сваркой соединение элементов происходит на участках, ограниченных площадью торцов электродов, подводящих ток и передающих усилие сжатия.• рельефная контактная сварка осуществляется на отдельных участках по заранее подготовленным выступам – рельефам.• шовной контактной сварке соединение элементов выполняется внахлёстку вращающимися дисковыми электродами в виде непрерывного или прерывистого шва.

Электронно-лучевая сварка. Сущность процесса сварки электронным лучом состоит в использовании кинетической энергии электронов, быстро движущихся в глубоком вакууме. При бомбардировке поверхности металла электронами подавляющая часть их кинетической энергии превращается в теплоту, которая используется для расплавления металла.

Для сварки необходимо: получить свободные электроны, сконцентрировать их и сообщить им большую скорость, чтобы увеличить их энергию, которая при торможении электронов в свариваемом металле превращается в теплоту.

Электронно-лучевой сваркой сваривают тугоплавкие и редкие металлы, высокопрочные, жаропрочные и коррозионно-стойкие сплавы и стали.

Диффузионная сварка в вакууме имеет следующие преимущества: металл не доводится до расплавления, что даёт возможность получить более прочные сварные соединения и высокую точность размеров изделий; позволяет сваривать разнородные материалы: сталь с алюминием, вольфрамом, титаном, металлокерамикой, молибденом, медь с алюминием и титаном, титан с платиной и т. п.

Плазменной сваркой можно сваривать как однородные, так и разнородные металлы, а также неметаллические материалы. Температура плазменной дуги, применяемой в сварочной технике, достигает 30 000 C. Для получения плазменной дуги применяются плазмотроны с дугой прямого или косвенного действия. В плазмотронах прямого действия плазменная дуга образуется между вольфрамовым электродом и основным металлом. Сопло в таком случае электрически нейтрально и служит для сжатия и стабилизации дуги. В плазмотронах косвенного действия плазменная дуга создаётся между вольфрамовым электродом и соплом, а струя плазмы выделяется из столба дуги в виде факела. Дугу плазменного действия называют плазменной струёй. Для образования сжатой дуги вдоль её столба через канал в сопле пропускается нейтральный одноатомный (аргон, гелий) или двухатомный газ (азот, водород и другие газы и их смеси). Газ сжимает столб дуги, повышая тем самым температуру столба. Лазерная сварка. Лазер – оптический квантовый генератор (ОПГ). Излучателем – активным элементом – в ОРГ могут быть: 1) твёрдые тела – стекло с неодимом, рубин и др.; 2) жидкости – растворы окиси неодима, красители и др.; 30 газы и газовые смеси – водород, азот, углекислый газ и др.; 4) полупроводниковые монокристаллы – арсениды галлия и индия, сплавы кадмия с селеном и серой и др. Обрабатывать можно металлы и неметаллические материалы в атмосфере, вакууме и в различных газах. При этом луч лазера свободно проникает через стекло, кварц, воздух. Холодная сварка металлов. Сущность этого вида сварки состоит в том, что при приложении большого давления к соединяемым элементам в месте их контакта происходит пластическая деформация, способствующая возникновению межатомных сил сцепления и приводящая к образованию металлических связей. Сварка производится без применения нагрева. Холодной сваркой можно получать соединения стык, внахлёстку и втавр. Этим способом сваривают пластичные металлы: медь, алюминий и его сплавы, свинец, олово, титан. Сварка трением выполняется в твёрдом состоянии под воздействием теплоты, возникающей при трении поверхностей свариваемых деталей, с последующим приложением сжимающих усилий. Прочное сварное соединение образуется в результате возникновения металлических связей между контактирующими поверхностями свариваемых деталей. Высокочастотная сварка основана на нагревании металла пропусканием через него токов высокой частоты с последующим сдавливанием обжимными роликами. Такая сварка может производиться с подводом тока контактами и с индукционным подводомтока. Сварка ультразвуком. При сварке ультразвуком неразъёмное соединение металлов образуется при одновременном воздействии на детали механических колебаний высокой частоты и относительно небольших сдавливающих усилий. Этот способ применяется при сварке металлов, чувствительных к нагреву, пластичных металлов, неметаллических материалов. Сварка взрывомоснована на воздействии направленных кратковременных сверхвысоких давлений энергии взрыва порядка (100...200) Х 108 Па на свариваемые детали. Сварку взрывом используют при изготовлении заготовок для проката биметалла, при плакировке поверхностей конструкционных сталей металлами и сплавами с особыми физическим и химическими свойствами, а также при сварке деталей из разнородных металлов и сплавов.

 

 

megaobuchalka.ru

КРАТКАЯ ИСТОРИЧЕСКАЯ СПРАВКА О РАЗВИТИИ СВАРОЧНОЙ ТЕХНИКИ В СУДОСТРОЕНИИ

ОСНОВЫ СВАРКИ СУДОВЫХ КОНСТРУКЦИЙ

Русские ученые Николай Николаевич Бенардос (в 1882 г.) и Ни­колай Гаврилович Славянов (в 1888 г.) прославили Россию своими замечательными изобретениями. Первый изобрел электрическую дуговую сварку угольным электродом, второй - электрическую ду­говую сварку плавящимся электродом. В свое время они сами счита­ли свои изобретения важными, однако, вряд ли могли предполагать, что открытые ими способы соединения металлов (да и не только ме­таллов) через столетие станут ведущими технологическими процес­сами изготовления и ремонта металлических конструкций самых различных назначений.

Надо отметить, что сварка, как процесс соединения металличес­ких частей изделий, известна давно. Еще в древности люди научи­лись добывать и обрабатывать железо и изготавливать путем ковки из его нагретых частей различные изделия. С начала XIX в. приме­нялся так называемый способ сварки «литьем». Этот способ по суще­ству является разновидностью обычного литья, когда две металли­ческие детали соединялись заливкой расплавленного металла в зазор между ними.

Что же стоит за термином сварка? ГОСТ 2601-74 «Сварка метал­лов. Основные понятия, термины и определения» предлагает следую­щую формулировку: «Сварка - процесс получения неразъемных со­единений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве или плас­тическом деформировании, или совместном действии того и друго­го». Отсюда в классификации способов сварки и принято делить все существующие способы на два крупных класса: сварка плавлением и сварка давлением. В наше время существует большое количество спо­собов сварки в каждом из указанных классов.

Сущность способа Н. Н. Бенардоса (рис. 1.1, а) заключается в том, что между угольным электродом и изделием, подключенными к ак­кумулятору, возникает электрическая дуга, приводящая к плавлению металла изделия. В область дуги сбоку вводится добавочный металл в виде присадочного прутка для обеспечения формирования сварно­го шва. Способ Н. Г. Славянова отличается тем, что в качестве элект­рода применен металлический плавящийся стержень, который под­держивает горение дуги и, одновременно расплавляясь, формирует шов (рис. 1.1, б). Следует отметить, что Славянов разнообразил свое изоб­ретение и па многие его виды получил патенты в ряде стран. Его пред­ложения впоследствии были развиты русскими учеными и получили широкое распространение в мировой промышленности. Славянов был пионером использования электросварки в судостроении, применив ее для ремонта деталей судовых механизмов. Однако в заметных объе­мах электросварка в России начинает применяться только в 20-х гг. прошлого столетия.

а) б)

Рис. 1.1. Схемы способов сварки: а - II. II. Іісиардоса; б — II. Г. Славянина:

1 — присадочный пруток: 2 - исндавящийся электрод: '} — плавящийся ллсктрод

Много для развития сварки в отечественном судостроении сделал профессор Виктор Петрович Вологдин. Он первый применил электро­сварку по методу Славянова на Дальзаводе в г. Владивостоке, где в 1926 г. было организовано производство сварных котлов, а в 1930 г. построен первый цельносварной корпус морского буксира. В. П. Во­логдин впервые в стране организовал подготовку инженеров-свар - щиков, первый выпуск которых состоялся в Дальневосточном поли­техническом институте в 1930-31 гг. Впоследствии (1934-1949 гг.) Вологдин возглавлял кафедру сварки Ленинградского кораблестро­ительного института. В эти годы он много сделал для того, чтобы сварка стала ведущим технологическим процессом в отечественном судо­строении, так же, как и пришедший ему на смену профессор Георгий Александрович Бельчук.

Опыт применения электросварки на Дальзаводе постепенно распро­странялся на другие судостроительные заводы страны. В 1935 г. в Ленинграде был построен первый крупный иолусварноп мор­ской пароход «Седов», на ряде заводов начата постройка сварных до­ков, теплоходов для Каспийского моря и других цельносварных судов.

К началу Великой Отечественной войны сварка почти полностью вытеснила клепку. В 1939 г. клепка для изготовления речных судов была запрещена постановлением правительства. В годы войны все корпуса строящихся тогда судов, как и их ремонт, выполнялись толь­ко с помощью электросварки. Это было время перехода от изготовле­ния клепаных корпусов к сварным, и по своему значению оно так же революционно, как время перехода строительства деревянных судов к металлическим.

Переход к сварному судостроению был непрост и потребовал про­ведения достаточно большого объема самых разнообразных научно - исследовательских работ для того, чтобы убедиться в абсолютной надежности сварных соединений и возможности безаварийной дли­тельной эксплуатации сварных корпусов судов и кораблей различно­го назначения.

При соединении двух листов с помощью клепки на стык накла­дываются дополнительные полоски металла (с одной или двух сто­рон листа), проводится сверловка отверстий, затем в отверстия вставляются заранее нагретые до высоких температур заклепки, тор­цы которых осаживаются специальным инструментом до получе­ния плотного соприкосновения соединяемых деталей. При больших объемах изготовления металлических конструкций процесс весьма трудоемок и малопроизводителен. Сварное соединение значитель­но проще по своей конструкции. Здесь кромки собранных в соответ­ствии с чертежом деталей расплавляются тем или иным способом, образуя монолитное неразъемное соединение. Наряду с тем, что эти оба вида обеспечивают получение прочно-плотного соединения, сварка дает следующие преимущества:

1) масса сварной конструкции уменьшается на 15...20% из-за от­сутствия в ней перекроев или дополнительных накладок;

2) резко снижается трудоемкость изготовления конструкции (от­падает необходимость разметки, сверления большого количе­ства отверстий, изготовления накладок и заклепок, а также трудоемкий процесс нагрева заклепок и самой клепки):

3) появляется возможность совершенствования форм конструк­ции, так как технологическая свобода при применении сварки чрезвычайно велика;

4) появляются возможности для механизации процесса, что свя­зано с относительной простотой сварных соединений;

5) труд при изготовлении сварных конструкций менее тяжел, не­жели при изготовлении клепаных конструкций;

6) при применении современных способов сварки (механизиро­ванной под флюсом и в среде защитных газов) улучшаются экологические характеристики процесса.

Применение сварки кардинально изменило технологические процес­сы изготовления корпусов судов. Так, 60...70% сборочно-сварочных ра­бот выполняются в сборочно-сварочных цехах, где изготавливаются сек­ции либо блоки, которые с высокой степенью готовности затем передаются на стапель, где из них формируется и сваривается корпус судна. Большой объем сварочных работ производится при изготовлении различных изделий судового машиностроения и энергетики. Сварка здесь позволяет создавать комбинированные лито-сварные либо штам­посварные конструкции, конструкции из различных материалов.

За последние несколько десятилетий значительно увеличился объем научных исследований во всех областях сварочного производ­ства. Это привело к созданию новых марок сварочных материалов (электродов, сварочных проволок, флюсов и т. д.), что было связано с расширением номенклатуры сталей и сплавов, применяемых в раз­личных отраслях промышленности, f [есомненный прогресс наблюда­ется в области разработки и применения новых источников питания, создания универсальных автоматов и полуавтоматов различного на­значения, новых прогрессивных технологий изготовления сварных конструкций. Из года в год увеличивался объем применения механи­зированных способов сварки, особенно в среде защитных газов, дос­тигнув в настоящее время 50,„60%. Начинают появляться роботизи­рованные комплексы на поточных линиях изготовления узлов. На рис. 1.2 показана динамика применения механизированных способов сварки в судостроении.

Практически нет способа сварки, который не применялся бы в су­достроении. Для машиностроительных конструкций, котлов высо­кого давления и корпусов реакторов с успехом применяется электро - шлаковая сварка. Для изделий энергетики и приборостроения находит применение электронно-лучевая и лазерная сварка. Разработанные процессы плазменно-воздушной резки позволили улучшить качество вырезаемых деталей, уменьшить их деформации и этим создать ус­ловия для расширения применения механизированных способов свар­ки. В этом отношении являются перспективными разработки по со­зданию технологии лазерной резки, что направлено на дальнейшее

АО А (

71

5 .72,

63

•f-

58,0

/

/

^ 53,3_.^ *

Д— •*-----

—58ду :53,6

А'щ

47,0}

/

//

"' / ' /

20,

170

}

/ 16^

J

ОІ7.6 17 Q

1,0 14,0 Ч

1 14Л

205

—«г--------

/

Рис. 1,2. Изменение обьемон применения механнзиронанных способом смаркн н огечссінснном судостроении:

о — сиарка иод ф. йогом: ч — сиарка и СО;.

• - уротчи. механизации сварочных рабої

увеличение точности вырезаемых деталей за счет уменьшения тепло­вой деформации кромок.

Большой вклад в разработку прогрессивных сварочных технологий, механизацию сварочных процессов, создание современного сварочного оборудования, сварочных и основных материалов для изготовления су­довых конструкций внесли Центральный научно-исследовательский институт технологии судостроения (ЦНИИ ТС), Центральный научно - исследовательский институт конструкционных материалов (ЦНИИ КМ) «Прометей», Институт электросварки им. Е. О. Патона (г. Киев).

Все рассмотренные способы сварки при своем использовании тре­буют соблюдения комплекса правил техники безопасности п охраны труда, которые должны отражаться в соответствующей технической документации и строго соблюдаться при проведении сварочных работ. …

Процесс сварки сопровождается развитием в металле сварных соеди­нений необратимых объемных изменений, в результате которых в конст­рукциях возникают остаточные деформации и напряжения. Являясь соб­ственными напряжениями, т. е. уравновешенными в любых сечениях …

Коррозия - это процесс разрушения металлов в результате взаи­модействия их с внешней средой. Термин ржавление применим только к коррозии железа и его сплавов с образованием продуктов коррозии, состо­ящих в основном …

msd.com.ua

1. Краткая история развития основных способов сварки давлением

1887 г. – контактная точечная сварка (Бенардос Н.Н., Россия)

1903 г. – стыковая сварка уплавлением (Германия)

1905 г. – конденсаторная сварка

1946 г. – высокочастотная сварка (СССР)

1955 г. – сварка трением (Чудиков А.И., СССР)

1957 г. – диффузионная сварка в вакууме (Козаков Н.Ф.)

1961-1963 г. - сварка взрывом

1971-1972 г. - сварка прокаткой (ак. Целиков)

1981 г. – ударная сварка в вакууме (Харченко Г.К.)

Области применения: автомобилестроение, с/х машиностроение и тракторостроение, самолётостроение, вагоностроение, трамваестроение, производство мотоциклов и велосипедов, производство труб, производство магистральных трубопроводов, производство холодильников, производство спец. техники, сварка в микроэлектронике.

2. Стадии формирования соединений при сварке в твердой фазе.

Процесс образ-я соед-й в тв-ой фазе подразд-ся на три осн-е стадии:1) образ-е физ-го контакта; 2) активация контактных пов-тей; 3) объемное взаим-е соед-х мат-лов.

Процесс образ-я физ-го контакта зависит от ряда факторов. К ним относят, сост-е контактир-х пов-тей, физико-хим-е св-ва мат-лов, условия термодефоромац-го воздействия на микровыступы в зоне св-ки.

Если м/у соед-ми пов-ми металлов образ-ся физ-й контакт, то необх-мым услов-м образ-я соед-я в тв-й фазе явл-ся активация контактных пов-тей. В результате чего, происходит межатомное взаим-е. Оно прив-т к образ-ю хим-х связей между атомами соед-х пов-тей. Образ-е хим-х связей обычно называют схват-м.

Большое влияние на кинетику активации контактных пов-тей оказ-т т-ра. С ее ростом увел-ся частота выхода дислокаций в зону физ-го контакта, увел-ся скор-ть движения дислокаций.

Объемное взаим-е соед-х металлов приводит в результате диффузии к устранению физ-х и хим-х несовершенств в строении металла в зоне стыка, образ-ю в результате рекристаллизации общих зерен в контакте, релаксации внутр-х напряжений.

Хар-р объемного взаим-я при cв-ке разноим-х металлов опр-ся диаграммой состояния. В этом случае возможно образование переходной зоны, состоящей из неограниченных твердых растворов, ограниченных твердых растворов, интерметаллидов. Если в зоне сварки при этом образуются хрупкие переходные слои, то процесс объемного взаимодействия надо контролировать и ограничивать. В этом случае необходимо подбирать такие параметры процесса сварки, которые исключали бы возможность опасного развития диффузионных процессов.

Длительность взаимодействия τв при каждом конкретном случае сварки давлением определяется его технологическими особенностями. Длительность схватывания атомов по всей площади соединения τс определяется длительностью активации всех атомов контактной поверхности, т.к. атомы, достигшие потенциального энергетического барьера, "мгновенно" образуют межатомные химические связи. Длительность τр зависит от уровня напряжения в свариваемом металле к моменту окончания деформации, а также от температуры сварки и механизма, которым осуществляется релаксация напряжений.

Длительность τи определяется природой соединяемых металлов и температурой. Длительности τи и τохл определяются технологическими особенностями конкретного способа сварки давлением, а τохл зависит еще и от условий отвода тепла от зоны сварки, а значит от свойств окружающей среды, особенностей конструкции сварочного оборудования и технологической оснастки. Это значит, что значением τохл можно управлять.

Условие (1.5) должно выполняться для тех способов сварки давлением, при которых уровнем и длительностью действия сжимающих напряжений на свариваемые металлы можно управлять не только в процессе, но и после окончания сварки. К таким способам относятся диффузионная, термокомпрессионная, холодная, трением и др. При этих способах сварки имеется возможность после окончания самого цикла сварки сжимающее напряжение снижать до определенного уровня и далее оставлять постоянным.

Существует другая группа способов сварки давлением, при которых пластическая деформация и действие сжимающих напряжений заканчиваются одновременно. В этих случаях необходимо, чтобы напряжения в свариваемых металлах в процессе их пластической деформации не достигли уровня σ*.

studfiles.net

История сварочного производства | Железная лаборатория

История развития сварочного производства в России

Автор Сварщик | 24 декабря 2010

Электрическая дуговая сварка в настоящее время является преобладающей технологической операцией соединения сборочных деталей и элементов стальных конструкций.Сварка металлов — выдающееся русское изобретение.Крупнейший русский физик академик Василий Владимирович Петров первый в мире в 1802 г. открыл и исследовал явление электрической дуги. Для своих опытов он создал самую большую для того времени электрическую батарею. Присоединяя к одному из полюсов батареи угольный стержень, а ко второму железную проволоку, выдающийся русский экспериментатор получил яркое пламя. Свои опыты В. В. Петров описал в классическом труде «Известие о гальванивольтовских опытах», изданном в 1803 г. В этой книге впервые указывается на возможность использования тепловой энергии электрической дуги для расплавления металла.Талантливый русский изобретатель Николай Николаевич Бенардос в 1882 г. применил электрическую дугу для расплавления и сварки металлов угольным электродом с введением в дугу извне присадочного металла в виде металлического прутка. Н. Н. Бенардос разработал основные способы сварки и резки металлов электрической дугой, применяемые и ныне.В 1888—1890 гг. способы использования электрической дуги для сварки металла были коренным образом усовершенствованы горным инженером Николаем Гавриловичем Славяновым, заменившим угольный электрод металлическим. По способу Н. Г. Славянова электрическая дуга образуется между металлическим электродом, присоединенным к одному полюсу электрической цепи, и свариваемой деталью, к которой присоединен второй полюс цепи. Источником сварочного тока служила электрическая машина постоянного тока, построенная Н. Г. Славяновым.Н. Г. Славянов организовал на Пермском заводе электросварочный цех, в котором с большим искусством выполнялись электросварочные работы.Способ сварки Славянова постепенно нашел применение во многих странах.Отсталая промышленность России слабо использовала ценные изобретения Н. Н. Бенардоса и Н. Г. Славянова. В конце прошлого столетия в стране работало всего 10 сварочных установок. Сварка применялась только при ремонтных работах и при восстановлении оборудования.В СССР электросварка получила повсеместное распространение. К началу 30-х годов в СССР началось широкое производство электросварочного оборудования и специальных электродов для сварки.Наряду со сварочными машинами постоянного тока были созданы простые и экономичные сварочные трансформаторы переменного тока.С 1929—1930 гг. электросварка применяется не только при ремонтных работах, но и при изготовлении стальных конструкций и машин.В 1931—1932 гг. электросварка была применена при изготовлении и монтаже промышленных зданий и резервуаров на Кузнецкстрое и воздухо- и газопроводов на строящихся металлургических заводах в Магнитогорске и Мариуполе. Однако в тот период сварка еще выполнялась несовершенными электродами с тонким меловым покрытием, в результате чего металл шва имел пониженную пластичность и недостаточную прочность, что ограничивало область применения сварки.В 1935 г. советскими инженерами были разработаны и внедрены в производство электроды нового типа, так называемые толстообмазанные, или качественные, имеющие на стержне толстый слой покрытия. Выполненный такими электродами сварной шов не уступает по своим свойствам свариваемому металлу. С этого времени электросварка при изготовлении стальных конструкций все больше и больше вытесняет клепку.В 1940 г. на заводах страны действовало около 50 тыс. сварочных постов.Наряду с развитием ручной сварки проводились работы по механизации сварочного процесса. Институт электросварки им. Е. О. Патона Академии наук УССР разработал новый процесс автоматической сварки закрытой дугой под слоем флюса, повышающий производительность труда и качество сварного шва.Автоматическая сварка в строительстве получила распространение при изготовлении всех видов конструкций.В последние годы успешно применяется полуавтоматическая сварка. Решетчатые конструкции и места, недоступные для сварки автоматами, завариваются полуавтоматами.В настоящее время сварка продолжает совершенствоваться и развиваться. Русские специалисты продолжают работать над созданием новых высокопроизводительных качественных электродов, а также дальнейшим усовершенствованием сварочного оборудования и методов сварки. Совершенствуются способы электрической сварки голой проволокой в среде защитных газов.

загрузка...

Похожие сообщения

  • Нет связанных записей.
Электрическая дуговая сварка стальных конструкций

iron-lab.ru

История и развитие сварочного производства - Конспект

История и развитие сварочного производства

(конспект лекций)

Содержание

Предисловие

Глава 1. Из истории сварки

Глава 2. Развитие электрической сварки

Глава 3. Основные виды современной сварки

3.1 Электрическая дуговая сварка

3.2 Электрошлаковая сварка

3.3 Контактная и прессовая сварка

3.4 Газовая сварка и резка

3.5 Лучевые виды сварки

Предисловие

Развитие человечества на последнем этапе (с окончанием последнего ледникового периода) насчитывает почти 12000- летнюю историю.

Если углубится в историю, то можно заметить, что с древних времен успехи человеческого общества в целом и отдельных племен и народов в отдельности в большой степени зависели от возможностей существовавших в это время технологических процессов. Важное место из множества технологий занимают способы соединения. Человек стал разумным существом (Homo sapiens) лишь тогда, когда стал создавать орудия труда и оружие.

Пользоваться палками и камнями могут и обезьяны, но догадаться привязать камень к палке может только существо, обладающее сознанием. Поэтому первым технологическим процессом была разновидность соединения – связывание.

Первобытный человек имел достаточно камней и много времени для совершенствования методов изготовления каменных орудий. Американские индейцы, например, использовали вулканическое стекло (обсидиан), которое легко раскалывается на пластины и обрабатывается. У первобытных людей камень постепенно стал уступать место меди – сначала самородной, которой в природе было не мало, а потом и выплавленной из медной руды.

По сравнению с раскалыванием, обтесыванием, шлифовкой, сверлением, привязыванием камней, литье и ковка меди оказались более сложными технологическими процессами. Возросло количество и значимость факторов или параметров процесса, которые нужно было контролировать, чтобы добиться хороших результатов при изготовлении изделий высокого качества. Одним из таких параметров было - поддержание необходимой для технологии температуры на костре.

Еще более сложным стал технологический процесс получения искусственного сплава, например, бронзы (Cu + Sn), требующий контроля количественного соотношения (1:0,83) компонентов меди и олова. Но так как она обладает высокими потребительскими свойствами по сравнению с исходными материалами, то трудности получения ее не останавливала людей. И все же, лучшими материалами для изготовления изделий были железо и его сплавы.

Все больше материалов входило в сферу жизнедеятельности населения, совершенствовалась и технология их обработки. Но историкам еще долго не удавалось установить зависимость между созданием новых технологий и изменением быта людей.

Свой вклад в изучение этих закономерностей внес в начале 19 века датский исследователь К. Томсен.

Исторические факты

В представлении античного общества наиболее прославленными достопримечательностями являются, так называемые - «Семь чудес света»:

  1. Древние египетские пирамиды.

  2. Храм Артемиды в Эфесе около 550 до н.э. (в греч. Мифологии дочь Зевса – богиня охоты, покровительница рожениц. Изображалась с луком и стрелами. Ей соответствовала римская Диана).

  3. Мавзолей в Галикарнасе середина 4 в. до н.э. (гробница правителя Кари Мавсола в г. Галикарнасе – монументальное погребальное сооружение. Отсюда и произошло название - Мавзолей).

  4. Террасные (висячие) сады Семирамиды в Вавилоне 7 в. до н.э.

  5. Статуя Зевса в Олимпии 430 лет до н.э.

  6. Статуя Гелиоса в Родосе 292 – 280 лет до н.э. (Колосс Родосский)

  7. Александрийский маяк - 280 лет до н.э.

Как показывают археологические исследования и исторические хроники – «Колосс Родосский» был снаружи покрыт тонкими медными листами, которые были соединены между собой с использованием холодной сварки. То есть технология сварки была применена и при создании шедевров античного периода.

Латунь (от нем. Latun) – сплав меди с цинком (до 50%), часто с добавками Al, Fe, Mn, Ni, Pb и др. элементов в сумме до 10%. Хорошо обрабатывается давлением, обладает хорошей пластичностью, достаточной прочностью, коррозионностойкая.

Мельхиор (исходит от имен изобр. Француз. Майо (Maillot) и Шарье (Charier)) – сплав меди с никелем (5 - 30%) иногда с добавлением железа (до 0,8%) и марганца до 1%. Обладает хорошей коррозионностойкостью, обрабатывается в горячем и холодном состоянии.

Нейзильбер (с нем. новое серебро) – сплав меди с никелем (5 - 35%) и цинка (13 –43%)

Сварка – процесс получения неразъемного соединения посредством установления межатомных (металлических) связей между соединяемыми частями при их нагреве и расплавлении или пластическом деформировании, или того и другого вместе.

Пайка – процесс образования соединения с межатомными связями путем нагрева соединяемых материалов ниже температуры их плавления, смачивания их припоем, затекания припоя в зазор и последующей его кристаллизацией.

Сын датского купца и судовладельца Кристиан Томсен (в нач. 19 века), занимаясь бухгалтерским делом, он, одновременно, начал изучение археологических сокровищ национального музея в Копенгагене, в котором хранится богатейший материал собранных со всего света различных, том числе, и уникальных находок. Он установил следующее соответствие - чем примитивнее обработка изделия, тем «старше» оно по возрасту, то есть более древнее по времени его изготовления.

Он предложил разделить историю материальной культуры на три периода:

  1. каменный – энеолит до 4 век до н.э.;

  2. бронзовый – 4 век до н.э. – 1 век до н.э.;

  3. железный век с 1 века до н.э. до настоящего времени.

Только в 60 годах 19 века идея К. Томсена, которому к тому времени было уже за 70лет, получила международное признание. Классификация эта связана с тем, что в качестве критерия была принята технология обработки материалов.

В тоже время, если за основу принять технологию изготовления составного изделия, то по распространенным в то время способам соединения историю материальной культуры можно разделить на век связывания, век античной сварки, век клепки и современный период сварки. Однако эта классификация не совсем точна, т.к. кроме неразъемных соединений были и разъемные, такие как привязывание, а также шарнирные, клиновые, резьбовые и др. соединения.

Глава 1. Из истории сварки

Сварка возникла на первом этапе развития человеческой цивилизации. Еще в каменном веке камнем подходящей формы древний человек мог отковать изделия из самородков благородных металлов – золота, серебра, меди. Таким же технологическим приемом, когда необходимо было увеличить размеры изделия, соединяли эти пластины между собой, т.е. применяли один из видов сварки – холодную сварку,- сварка металлов в холодном состоянии путем приложения деформирующих усилий. Этот первый вышедший из древнего периода способ сварки получил развитие в настоящее время для соединения медных, алюминиевых проводов, оболочек кабелей связи, морозильных камер холодильников и т.д. В древние времена этот способ был использован при сварке благородных металлов, которые практически не окисляются. Ударяя по сложенным вместе кускам металла, удавалось добиться прочного соединения. В Дублинском Национальном музее хранится золотая коробка, изготовленная в эпоху поздней бронзы, стенки и днище ее скованы плотным швом. Как считают эксперты, изготовлена она с помощью холодной сварки.

За несколько тысячелетий до н.э. некоторые племена (например, на территории Бесарабии, Украины) добывали из руды медь, свинец. Но техникой литья они еще не овладели, поэтому они подогревали и сковывали отдельные куски, получая более крупные куски и изделия из них.

Появление бронзы – сплава меди и олова – заставило древних умельцев приняться за разработку новых методов соединения отдельных элементов вместе (сварку). Бронза обладает высокой твердостью, прочностью, сопротивлению истиранию. Однако достаточно низкая пластичность не позволяла применять кузнечную сварку для соединения отдельных заготовок. Вдобавок возросли и габариты изделия, и трудно равномерно разогреть их. В III-II тыс. лет до н.э. умельцы трипольских племен применяли скручивание, фальцовку, склепывание, паяние.

Привести пример о находках на землях бывшей Римской Империи бронзовые сосуды цилиндрической формы h=310 мм d=0,5-0,7 мм были сварены по образующей литейной сваркой!

В начале железного века начали получать кричное железо. Куски железной руды (оксиды и др. соединения железа) нагревали вместе с углем и получали комки, в которых перемешаны частицы железа, шлака и остатков угля. А затем эти комки (крицы) многократно нагревали и проковывали в горячем состоянии. Частицы шлака и угля выдавливались, а отдельные частицы железа соединялись между собой – связывались, образуя плотный металл. Многократный нагрев и ковка – сварка делали металл чище и плотнее. Для раскисления добавляли природные сланцы.

При сыродутном или кричном способе получения железа, который господствовал на протяжении тысячелетий крицы получили относительно небольших размеров и для получения изделий действительно больших размеров их (куски) необходимо было соединять между собой. Для увеличения длины изделий сварку вели внахлестку.

Клинки и мечи выковывали из нескольких полос среднеуглеродистой стали (0,3-0,4%).

Большое значение для развития техники обработки черных металлов имела сварка железа с разным содержанием углерода с целью улучшения качества лезвия режущих и рубящих орудий. Это требовало большого мастерства кузнецов, т.к. температура сварки железа с различным содержанием углерода неодинакова. При изготовлении мечей, дротиков, ножей выполняли сварку полос железа и стали с выходом последней на режущую часть лезвия. Это давало хорошее сочетание мягкого и вязкого железа или низкоуглеродистой стали с твердой, но хрупкой сталью, содержащей большое количество углерода.

Часто при изготовлении ножей, серпов, топоров кузнецы – сварщики наваривали небольшую стальную пластину на режущую часть лезвия.

В скифский период в некоторых случаях делались попытки произвести сварку бронзы с бронзой путем прилива. Однако не всегда получалось прочное соединение. Литейщики раннего железного века при починке изделий (например, котлов) пробивали в стенках отверстие, таким образом, получалась соединяющая отливка, напоминающая форму заклепки.

При изготовлении ювелирных изделий из золота, серебра, бронзы в раннем железном периоде широко использовали пайку. Между частями, которые нужно соединить в единое целое изделие, закладывались кусочки сплава – припоя и собранное таким образом изделие нагревали до температуры, достаточной для расплавления припоя, но ниже основного металла. Припой растекается по зазору, смачивая кромки, диффундировал в металл и после остывания схватывал кромки.

Рано или поздно ювелиры должны были обнаружить, что для соединения металлов и сплавов методом заливки можно применять также сплавы, которые плавятся при значительно меньших температурах, чем материал соединяемых деталей изделий. Например, стоило только в золото добавить медь или серебро, как образовался сплав со значительно меньшей температурой (например, сплав 20% золота и 80% меди плавится при температуре 886°С (золото - 1064°С, медь - 1083°С), сплав 70% серебра и 30% меди - 780°С(Ag - 961°С)).

Это свойство сплавов и было использовано для пайки. Искусство пайки совершенствовалось, появлялись новые припои, начали применять флюсы, растворяющие и связывающие оксиды, мешающие припою диффундировать. В VIII-X в.в. появляются легкоплавкие припои – свинцовисто-оловянистые.

Металлургия и металлообработка больших успехов достигли в Древней Руси в X-XIII в.в. в связи с высоким развитием древнерусского ремесла. Технический уровень на Руси был выше, чем в Западной Европе. С помощью кузнечной сварки изготавливалось более 70% металлических изделий. С успехом применяли сварку железа с высокоуглеродистой сталью (до 0,9%).

С помощью сварки изготавливали огнестрельное оружие. До появления в конце XV века пушек отлитых из бронзы, артиллерийские орудия выковывали из железа. Их изготавливали следующим образом:

1) Выковывали из крицы железный лист;

2) Скручивали его на железной оправке в трубу;

3) Сваривали продольным швом внахлестку;

4) Затем на нее наваривали одну или две трубы, так чтобы продольные швы располагались в разных местах.

Полученные заготовки были короткие, поэтому для получения достаточно длинного ствола орудия несколько таких заготовок соединяли между собой также при помощи сварки. Для этого соответствующие концы труб выковывались в виде внутреннего и наружного конуса, соединяли и сваривали их внахлестку. В казенную часть ствола вваривали коническую железную заглушку, а рядом прорубалось запальное отверстие.

Древнерусские мастера успешно применяли сварку бронзы и стали (например, топорики, найденные в районе Старой Ладоги – обух бронзовый, а лезвия стальные).

При изготовлении пушек применяли и литейную сварку – заливали расплавленной бронзой соединяемые детали.

В то же время сварка металлов – кузнечная, литейная, пайка развивались медленно. В 19 веке в промышленности была механизирована кузнечная сварка. Ручной труд молотобойца был механизирован (заменен работой машин), т.е. стали применяться механические молоты с весом бойка до 1 т., производящим от 100 до 400 ударов в минуту.

Значительно улучшилась конструкция печей для нагрева свариваемых деталей, заменивших примитивные кузнечные горны. Печи переводятся на твердое, жидкое и газообразное топливо. Совершенствуется и технология сварки. Способом кузнечной сварки готовили биметалл. Листы разнородных металлов собирали в пакет, нагревали в печах и пропускали через валки прокатного стана.

Значительное применение кузнечная сварка находила в производстве стальных труб с прямолинейным продольным нахлесточным швом, а также спирально – шовные трубы.

Применялась сварка и при ремонте клепаных конструкций (рамы паровозов, корпуса судов) когда доступ по крайней мере с одной стороны после их сборки был возможен. Кроме того, применялась она при производстве инструментов, орудий труда и т.д.

Однако во многих отраслях производства кузнечная и литейная сварка ввиду ограниченных возможностей пламени, уже не удовлетворяла возросшим требованиям техники. Крупногабаритные конструкции и сложные по форме изделия невозможно было равномерно нагреть пламенем и успеть проковать или полностью залить стык до его остывания.

Следует заметить, что кроме сварочных методов соединения древние умельцы применяли скручивание, фальцовку, склепывание, а в более поздние времена – резьбовые соединения.

Глава 2. Развитие электрической сварки

В начале 19 века на основе достижений в области физики и электротехники в развитии сварки произошел качественный скачек, результатом которого было появление новых способов сварки, являющихся основой современной сварочной техники.

Просмотрим в хронологическом порядке некоторые открытия и события предшествующие появлению электрической сварки.

О природе электрических явлений люди знали издавна. Древние мудрецы установили связь между свойствами натертого шерстяной тканью янтаря и атмосферным электричеством.

За 2000 лет до нашей эры в Китае использовали компас

В 1600 г англичанин Уильям Гильберт опубликовал книгу «Про магнит, магнитные тела и большой магнит-Землю”, занимаясь вопросами электрических и магнитных явлений, открыл магнитную индукцию.

В 1672г немецкий физик Отто фон Герике создал машину, в которой при трении получался заряд статического электричества.

В 1745г нидерландский физик Питер фон Мушенбрук изобрел электрический конденсатор для накапливания электричества.

Исследование по выяснению природы грозового электричества производили Ломоносов и Рихман.

В 1799г итальянский ученый Вольта построил первый в мире источник электрического тока – «вольтов столб», состоящий из разнородных металлических прутков (медь+цинк), проложенных бумажными кружками, смоченными водным раствором нашатыря.

Одним из важных в этом ряду было открытие сделанное русским академиком

Петровым В.В.. В 1802г на построенной им мощной гальванической батарее он впервые в мире наблюдал явление электрической дуги.

Проводя опыты он использовал электрометр изобретенный Георгом Рихманом по изучению электропроводности различных материалов, он подсоединял к источнику эл. тока различные предметы из цинка, серебра, олова, железа и даже льда и по отклонению льняной нити на определенный угол определял, какое количество тока проходит через тот или иной проводник.

Когда он присоединял угольный стерженек обожженный из древесной палочки, она случайно разломилась пополам и между разломанными частями вспыхнуло ярчайшее маленькое пламя - электрическая дуга.

Он повторил опыт несколько раз и каждый раз горение дуги повторялось

Часть открытия дуги начали присваивать Г. Дэви- крупному английскому физику и химику, который в 1808 году также обнаружил электрическую дугу. Доклад, сделанный им по этому поводу не привлек внимания научного мира, т.е. отнеслись к этому открытию как к научному курьезу.

В 1815г английский физик Чилдрен расплавил и наварил в электрической дуге иридий, оксид церия и другие тугоплавкие материалы.

Петрова не вспоминали до тех пор, пока электрическая дуга не стал служить человечеству и один петербуржский студент не обнаружил книгу Петрова, изданную в 1803 году «Известие о гальвани-вольтовых опытах » о световом явлении посредством гальвани-вольтовой жидкости. «Пламя» горящее между двумя горизонтально расположенными углями – электродами принимало форму направленной вверх дуги и позже получило это название.

В 1900 году на Всемирной Парижской выставки в числе выдающихся электриков была названа фамилия русского ученого Петрова.

В 1820 году датский физик Эрстед открыл магнитное поле, окружающее проводник с током.

В 1821 году Деви продолжал исследования с дугой, описал действие магнитного поля на дугу.

Примерно в это же время французский ученый Араго Д.Ф. изобрел электромагнит, а французский же физик Ампер установил, что протекающие по параллельным проводникам токи притягивают или отталкивают друг друга.

В 1831 году английский физик Фарадей открывает явление электромагнитной индукции, заложив тем самым основы электротехники.

Максвелл вывел уравнение характеризующее электромагнитные поля и происходящие в них процессы.

Большой вклад в развитие основ электротехники внесли русские ученные – Якоби, Ленц, Лачинов и другие.

В середине 19 века разрабатываются конструкции ламп для бытового освещения и прожекторов.

В 1876 году русский изобретатель Яблочков создал так называемую «свечу Яблочкова»- дуговые лампы освещения улицы Петербурга, Парижа, Лондона. Они были снабжены автоматическими регуляторами, содержащие настоящую длину дуги.

Большой вклад в совершенствование конструкций ламп внес Чиколев.

Эти работы позволили глубже изучить свойства дугового разряда и были

При создании и совершенствовании дуговой сварки.

И вот в 1881 году Бенардос создал первый в мире реальный способ дуговой сварки.

То что способ родился в России не было случайным – основой ему были исследования и технические разработки в области электротехники, металлургии, металловедения.

Из биографии Бенардоса 1842года.

Он был разносторонним изобретателем – источники питания дуги – аккумуляторы, сельсхозустройства, устройства для точечной сварки.Свой способ дуговой он назвал «электрогефест».

В октябре 1888 года на заводе в Перьми другой русский изобретатель Славянов демонстрировал свой способ сварки. Способ заключался в том, что вместо угольного электрода была использована сварочная проволока при этом дуга горела между изделием и проволокой и грела а роль присадочной меры накладывали отдельными участками и чтобы расплавленный металл не растекался, зону сварки ограничивали барьером из земли.

В 1891 году он получил русскую привилегию на изобретенный им метод электрической отливки металлов.

За небольшой срок (3.5 года) на Метовилихинском заводе было выполнено более 1600 работ по сварке и наплавке ответственных изделий.

Заплавляли дефекты отливок, трещины и т.д.

В 1889 году в США Коффин, будущий основатель фирмы «Днерал электрик» предложил двухэлектродный держатель для сварки тонколистового металла дугой косвенного действия. Он также как и Бенардос, создавал под свариваемыми листами магнитное поле влияющее на дугу и сварочную ванну.

В это же время в Германии Церенер разрабатывает такой же способ и держатель.

В 1884 году американский изобретатель Томсон сконструировал мощный трансформатор и клещи для зажима металлических брусков, которые были сварены в стык.

(Следует заметить что и у Бенардоса тоже имеется патент на точечную сварку).

Вообще конец 19 начало 20 века не были годами широкого распространения электротехнологии и в, частности, электрической сварки. Электрическая энергия оставалась дефицитной. Известные способы сварки были достаточно сложны, а удовлетворительное качество переплавленного металла обеспечивалось ценой высокой трудоемкости.

Некоторые сварщики конца 19века на исходной ступени - применяя электрический ток для нагрева и размягчения отдаленных участков кромок изделия, а затем просовывая их, применяя метод сварки.

В тоже время для дуговой сварки по способу Славянова нужны были плавящиеся стальные электроды.

В 1907 году шведский инженер Оскар Кельберг предложил наносить на металлический стержень слой покрытия из различных веществ повышающих устойчивость горения дуги.

Несмотря на все трудности возникающие в процессе сварки без нее уже нельзя было обойтись

В конце 19 начало 20 века (на рубеже веков) появился новый способ не только соединения но и разделения металлов, основанный на использовании теплоты химических реакций.

Исследования проведенные французским ученым Ле Шателье способствовали созданию способа газовой сварки и резки. В 1895 году он доложил французской академии наук о получении высокотемпературного пламени (3150-32000С) при сжигании смеси ацетилена и кислорода.

В начале 19 века французские инженеры Фуше и Пикар разработали конструкцию ацетилено-кислородной горелки, которые практически не изменились до настоящего времени.

В 1904 году были разработаны резаки.

В 1908-09 годах во Франции и Германии были выполнены основные работы по подводной резки металлов. Вскоре подводная газовая резка применялась на флотах Америки и Англии.

В 1915 году за границей разрабатывается и используется технология дуговой резки.

В России газовая сварка и резка применялась прежде всего для исправления браков литья, в ремонтных работах и очень ограниченно для неответственных изделий с использованием оборудования и материалов.

В 1910-11 годах на заводах Урала и Украины в эксплуатации буквально единицы газовых постов, а с 1911года в Петербурге на заводе «Перун» начинается изготовление аппаратуры для газовой и резки металлов.

В этом же году газовая сварка была допущена при изготовлении паровых котлов, разрешив сварку неответственных частей котлов, но с условием проковки после сварки и по мере возможности – отжига.

textarchive.ru

КРАТКИЕ СВЕДЕНИЯ О СВАРКЕ. И РЕЗКЕ МЕТАЛЛОВ. § 1. ИСТОРИЯ РАЗВИТИЯ СВАРКИ

Основоположниками использования тепла электриче­ской дуги для целей сварки были русские ученые В. В. Петров, Н. Н. Бенардос и Н. Г. Славянов.

В 1802 г. впервые в мире профессор физики Санкт — Петербургской медико-хирургической академии Василий Владимирович Петров открыл явление электрического разряда в газах — электрическую дугу. В 1803 г. он впер­вые описал это явление в своей книге «Известия о галь- вани-вольтовских опытах», в которой указал на возмож­ность практического применения дуги для электроосве­щения и плавления металлов. Русский изобретатель Николай Николаевич Бенардос в 1882 г. впервые приме­нил электрическую дугу для соединения в одно целое ме­таллов, использовав угольную дугу, питаемую электриче­ской энергией от аккумуляторной батареи. В 1886 г. он получил патент под названием «Способ соединения и разъединения металлов непосредственным действием электрического тока». Н. Н. Бенардос является автором и ряда других способов сварки, которые применяют сей­час в промышленности. Несколько лет спустя, в 1888 г. русский инженер-металлург и изобретатель Н. Г. Славя­нов разработал способ сварки металлическим электро­дом, а затем ему выдали два патента под названием «Способ и аппараты для электрической отливки метал­лов» и «Способ электрического уплотнения металличе­ских отливок». Практическая ценность изобретений Н. Н. Бенардоса и Н. Г. Славянова была очевидна, но тем не менее до Октябрьской революции прогрессивный новый способ соединения металлов нс нашел широкого применения. Только в советское время на родине сварки этот процесс получил широкое распространение.

Выдающуюся роль в теоретической разработке сва­рочных процессов сыграли многие ученые нашей страны: Е. О. Патон, Д. А. Дульчевский, В. П. Вологдин, К. К. Хренов, Г. А. Николаев, Н. О. Окерблом, Н. Н. Рыкалин, К. В. Любавский, Б. Е. Патон, А. Н. Шашков, И. К. По- ходня, А. А. Чеканов, В. В. Подгаецкий, Б. И. Медовар, А. И. Акулов и др.

Нельзя не отметить фундаментальных исследований, проведенных и проводимых в институтах нашей страны, как например: институт электросварки имени Е. О. Па — тона, ВНИИЭСО, ЦНИИТМАШ, МАТИ, ЛПИ, инсти­тут металлургии имени Байкова АН СССР, ВНИИавто — генмаш, Оргэиергострой, институты судостроительной и авиационной промышленностей, а также крупных пред­приятий.

В Советском Союзе впервые в мире были разработа­ны такие высокопроизводительные способы сварки ме­таллов, как электрошлаковая, под флюсом, в углекислом газе, трением, диффузионная и др. Советский Союз зани­мает в настоящее время одно из первых мест в мире в об­ласти сварочного производства.

hssco.ru