Сварка меди и алюминия: обзор методов. Сварка меди с алюминием


Сварка алюминия и меди

Темы: Сварка алюминия, Сварка меди, Технология сварки, Сварные соединения.

Диаграмма состояния алюминий - медь свидетельствует, что в этой системе существует ряд устойчивых при комнатной температуре химических соединений: Θ-фаза (AI2Cu), η-фаза (AICu), ε2-фаза, δ-фаза (AI2Cu3), γ2-фаза (AlCu2), γ-фаза (AI4CU9), Они характеризуются высокой твердостью и низкой пластичностью. При комнатной температуре медь обладает сравнительно малой растворимостью в алюминии, несмотря на сходство в кристаллическом строении этих металлов.

Другие страницы, по теме

Сварка алюминия и меди

:

В сравнении с сочетанием алюминия с другими металлами (например, никелем, железом) для взаимодействия алюминия с медью характерны большие скорости роста прослоек интерметаллидов и малая продолжительность латентного периода. Температурная зависимость последнего имеет вид

τп = 3,8 * 10-8 ехр(130 / RT).

Кинетика роста промежуточных фаз описывается уравнением

у =9,1*105 ехр(100 / RT)τ - 3,46 * 102 ехр(30 / RT).

Эта зависимость хорошо согласуется с экспериментальнымиданными.

Наличие латентного периода позволяет получать высококачественное соединение непосредственно алюминия с медью, такими методами сварки давлением, которые используют относительно невысокие температуры при малой продолжительности воздействия. Отмеченные закономерности возникновения и роста интерметаллидных прослоек ведут к тому, что для каждого способа существует достаточно узкий диапазон значений технологических параметров режимов сварки и температурновременных условий эксплуатации биметаллического соединения. Работа биметалла Аl + Cu допускается при температуре, не превышающей 400oС, во избежание интенсивного роста диффузионного слоя и резкого ухудшения механических свойств. При нагреве выше указанной температуры в соединении алюминий + Л96 по мере ее роста и увеличения продолжительности выдержки образца идет образование δ-фазы, которая диффундирует в латунь, в результате чего появляются γ2-фаза и α-твердый раствор. Насыщение δ-фазы с другой стороны алюминия ведет к образованию Θ-фазы.

В связи с тем что существуют достаточно пластичные сплавы системы Аl - Cu, содержащие до 7 % Cu, и бронзы с содержанием до, 10% Аl перспективно такое ведение процесса сварки плавлением, когда содержание меди в сварном шве не будет превышать 6 ... 8 %.

Хорошей растворимостью в рассматриваемых материалах обладают серебро, цинк, кремний. Их бинарные диаграммы состояния достаточно просты. При нормальной температуре алюминий с цинком и кремнием являются двухфазными, образуя эвтектику. В системе AI - Ag установлено существование α-, β-, γ-, δ-фаз и соединения Ag3Al. Серебро хорошо растворимо как в алюминии, так и в меди. Содержание цинка в алюминии при 275oС составляет 31,6 %, в меди - 38 % (454oС). Растворимость кремния в алюминии 1,65 % (577oС), в меди - 5,2 % (548oС).

Склонность к образованию химических соединений - основной осложняющий фактор при сварке алюминия с медью. Особенности сочетания физических свойств меди и алюминия таковы, что в большинстве случаев не вызывают дополнительных осложнений. Так, разница в 1,5 раза коэффициентов термического расширения не при водит к опасности разрушения соединения, так как оба материала высокопластичны. При изменении температуры оба материала проявляют одинаковые тенденции к изменению механических свойств, при низких температурах сохраняют высокую пластичность. Коэффициент тепло- и температуропроводности меди с повышением температуры в диапазоне 0 ...600oС несколько снижается, а для алюминия возрастает почти в 2 раза в диапазоне 150...600oС. При 500oС значение коэффициента теплопроводности выравнивается, а при дальнейшем росте температуры значение этого параметра для алюминия становится выше.

Оксиды меди менее химически стойки. Упругость паров диссоциации для Cu2O при 727oС составляет 1,8 . 10-1 Па, для CuО при 900oС равна 1,18 . 10-3 Па, для АI2O3 при 727oС 1,5 . 10-15 Па. Толщина оксидной пленки на меди в 1,5 - 2 раза больше, чем на алюминии. На воздухе при нагреве СuО стремится перейти в Сu2O.

Сварка алюминия и меди проводится различными методами сварки давлением и плавлением.

Сварка давлением осуществляется методами холодной сварки, прокаткой, трением, ультразвуком, диффузионной, магнитно-импульсной, взрывом.

Холодная сварка алюминия и меди применяется главным образом для местного плакирования алюминиевых деталей медью (токоведущие элементы трансформаторов, шинопроводы, токоподводы к электролизерам) точечной сваркой, получения стыковых соединений проводов, шин и других элементов компактных сечений. Материал заготовок - технически чистая медь и алюминий.

Методом холодной прокатки получают биметаллические листы, полосы (карточная и рулонная прокатка). Степень обжатия при сварке прокаткой 60 ... 75 %.

В связи с необходимостью создания в зоне соединения направленного течения металла эта специфика процесса налагает определенные ограничения на соотношения толщин исходных заготовок. В связи с этим получить листовой материал при толщине >4 мм и малой толщине плакирующего слоя затруднительно или невозможно. Для электротехнической промышленности получают слоистый материал с минимальной толщиной медного покрытия 0,1 ... 0,8мм.

При местном плакировании медью алюминиевых деталей точечной холодной сваркой глубина вдавливания пуансона в 2 - 3 раза превышает толщину плакирующей меди. Особых ограничений на толщину алюминиевых деталей в этом случае нет. Недостаток метода наличие вмятин от инструмента на поверхности детали.

Принципиальных ограничений на размеры сечений при сварке встык, кроме возможностей самого оборудования, нет. Реально сваривают элементы с площадью сечения до 1000 мм 2. Техника подготовки и сварки не отличается от общих технологических закономерностей холодной сварки.

При этом способе сварки образование интерметаллидов исключено, так как процесс идет без предварительного нагрева.

Более широкая номенклатура толшин и материалов заготовок для изготовления слоистых листов может быть получена горячей прокаткой. Заготовки при этом нагревают до 450°С. Для защиты металла (меди) от окисления используют двухстадийный процесс: предварительное обжатие при первом проходе на 65 ...80 % от суммарного обжатия для уменьшения контакта с воздухом рабочей поверхности медной заготовки; прокатку нагретого пакета в вакууме, вакуумированных конвертах, аргоне.

Распространен способ горячей про катки, когда нагреву подвергается только алюминиевая заготовка, а холодные плакирующие медные листы накладываются непосредственно перед операцией обжатия. Такой прием снижает степень окисления. Обжатие ведется двухстадийно: на первом проходе 40.. .45 %. Суммарное обжатие 75 %.

Горячей прокаткой получают плакированный алюминий при толщине медного слоя 1,5 ... 2,5 мм. Для улучшения механических свойств (повышения предела прочности >100 МПа и угла загиба до 110... 180°) многослойные листы подвергаются термической обработке при температуре 250...270оС в течение 2 ... 8 ч.

Положительные результаты дает использование барьерного слоя из аустенитной стали (12Х18Н10Т), позволяющего избежать охрупчивание и сохранить прочность алюмомедного листа даже после нагрева до 500оС.

При сварке трением и ультразвуковой номенклатура свариваемых алюминиевых и медных сплавов шире. Основная особенность, присущая этим методам, состоит в том, что в силу их специфики из зоны соединения непрерывно идет эвакуация нежелательных продуктов взаимодействия материалов (интерметаллидов). При сварке трением меди со сплавом АМц на шлифах наблюдается прерывистая узкая (1,5 мкм) зона интерметаллидов.

Сварка трением налагает ограничения на конфигурацию сечения заготовок.

Для получения высококачественного соединения необходимыми условиями являются перпендикулярность поверхности торца к оси заготовки и предварительное снятие наклепа путем отжига, удаления окалины и обезжиривания трущихся поверхностей. Алюминиевую заготовку размещают в осадочной матрице, что позволяет компенсировать различия в пластических свойствах свариваемых материалов. Цикл давления - ступенчатый. Проковка дает дополнительные возможности разрушения и частичной эвакуации из плоскости стыка интерметаллидной прослойки. Для диаметров заготовок 20 ... 30 мм давление при нагреве и осадке соответственно 30.. .40 и 110...200 МПа. Суммарная осадка 14 ...20 мм. Получаемое соединение при испытаниях разрушается по алюминию.

При ультразвуковой сварке соединение выполняется внахлестку точками или непрерывным швом. В силу специфики процесса толщина заготовки, со стороны которой подводятся колебания, ограничена величиной порядка 1,2 ... 1,5 мм из-за гистерезисных потерь в толще материала.

Диффузионная сварка меди с алюминием и некоторыми его сплавами дает доброкачественные соединения при максимально возможном ограничении температуры нагрева, времени сварки и при использовании барьерных подслоев и покрытий. В качестве материала таких слоев можно использовать цинк, серебро, никель.

При сварке взрывом из-за кратковременности взаимодействия материалов при высоких температурах интерметаллиды не успевают образоваться или их количество незначительно. Сварные швы обладают высокими механическими свойствами. Прочность соединения при этом выше прочности основного материала в результате наклепа и большей протяженности поверхности сцепления из-за ее волнистости. Процесс позволяет получать нахлесточные соединенная в различных вариантах по практически любой площади. Ограничения налагаются на максимальную толщину метаемой заготовки из-за опасности ее разрушения при образовании второго перегиба в процессе деформирования под воздействием продуктов разложения взрывчатых веществ (ВВ). Ограничения на минимальную толщину заготовки связано с появлением нестабильности процесса детонации при чрезмерном уменьшении толщины слоя ВВ.

Магнитно-импульсная сварка алюминия и меди имеет схожую со сваркой взрывом при роду образования соединения, что позволяет получать доброкачественные соединения с минимальным количеством интерметаллидной фазы. Наиболее просто свариваются телескопические соединенная. Толщина и диметр заготовок ограничены возможностями оборудования (главным образом емкостью конденсаторных батарей, долговечностью индуктора). Реально сваривают трубные заготовки диаметром до 40 мм при толщине стенки порядка 1,0 ... 0,2 мм.

Сварка плавлением может осуществляться только в том случае, когда обеспечивается в основном плавление алюминия. Это может позволить получать в шве металл с ограниченным (6 ... 8 %) содержанием меди, что обеспечивает оптимальное сочетание свойств соединений. Основные пути решения задачи: применение рюмкообразной разделки кромок, снижение опасности перегрева металла в корне шва, легирование металла шва рением, цинком, использованиебарьерных подслоев.

Нанесение на медную кромку электролитическим путем слоя цинка толщиной порядка 60 мкм при аргонодуговой сварке позволяет снизить содержание меди в шве до 1% и в 3 - 5 раз уменьшить протяженность интермегаллидной прослойки со стороны меди (до 10 ... 15 мкм). Кромка медной заготовки при этом разделывается под углом 60°. Введение цинка через присадку при аргонодуговой сварке под флюсом при водит к тому, что содержание меди ≤12 %, а количество цинка в шве может достигать 30%. Соединения, получаемые в таких случаях, разрушаются при испытании по алюминию вдали от шва.

Электролитическое нанесение на медную кромку слоя олова или цинка при сварке металла малой толщины (3 ... 8 мм) позволяет получать хорошие соединения, так как слой покрытия, выполняющий роль барьера, кроме того создает перед движущейся волной жидкого металла прослойку, облегчающую смачивание поверхности расплавом алюминия.

Есть опыт создания более сложных покрытий: нанесение электролитическим путем на медную заготовку слоя никеля толщиной порядка 50 мкм и затем алитирование в расплаве алюминия (Т = 810 ...820оС, время 10 ... 20 с). Возможно покрытие поверхности меди оловом или свинцово-оловянистым припоем методом лужения.

Легирование шва кремнием при аргонодуговой сварке проводят через присадочный металл (проволока типа АК5).

Применение более жестких режимов сварки, чем необходимо для сварки алюминия, способствует получению удовлетворительного качества соединения. С уменьшением скорости сварки увеличивается переход меди в шов, растет время пребывания зоны контакта материалов при температуре интенсивного роста интерметаллидов. Рекомендуется выбирать погонную энергию из соотношения: q / V = (18,8 ... 20,9)δ, где δ - толщина свариваемого материала.

Смещение электрода в сторону более теплопроводной меди должно составлять (0,5 - 0,6) δ.

  • < Свариваемость меди
  • Сварка меди >

weldzone.info

Сварка меди и медных сплавов с металлами и сплавами других групп

Рекомендуем приобрести:

Установки для автоматической сварки продольных швов обечаек - в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе! Защита от излучения при сварке и резке. Большой выбор. Доставка по всей России!

Сварка меди с алюминием

Диаграмма состояния алюминий — медь свидетельствует, что в этой системе существует ряд устойчивых при комнатной температуре химических соединений: θ-фаза (Аl2Сu), η-фаза (AlCu), ξ2-фаза, δ-фаза (Аl2Сu3), γ2-фаза (АlСu2), γ-фаза (Al4Cu9). Они имеют высокую твердость и низкую пластичность. При комнатной температуре медь обладает сравнительно малой растворимостью в алюминии, несмотря на сходство в кристаллическом строении этих металлов.

В сравнении с сочетанием алюминия с другими металлами (например, Ni, Fe) для взаимодействия Аl с Сu характерны большие скорости роста прослоек интерметаллидов и малая продолжительность латентного периода. Для каждого способа существует достаточно узкий диапазон значений технологических параметров режимов сварки и температурно-временных условий эксплуатации биметаллического соединения. Работа биметалла Al + Cu допускается при температуре, не превышающей 400 °С во избежание интенсивного роста диффузионного слоя и резкого ухудшения механических свойств. При нагреве выше указанной температуры в соединении алюминий + Л96 по мере ее роста и продолжительности выдержки образца идет образование δ-фазы, которая диффундирует в латунь, в результате чего появляется γ2-фаза и α-твердый раствор. Насыщение δ-фазы с другой стороны алюминия ведет к образованию θ-фазы.

В связи с тем, что существуют достаточно пластичные сплавы системы Аl—Сu, содержащие до 7 % Сu, и бронзы с содержанием Аl до 10 %, является перспективным такое ведение процесса сварки плавлением, когда содержание меди в сварном шве не будет превышать 6—8 %.

Холодная сварка применяется главным образом для местного плакирования алюминиевых деталей медью (токоведущие элементы трансформаторов, шинопроводы, токоподводы к электролизерам) точечной сваркой, получения стыковых соединений проводов, шин и других элементов компактных сечений. Материал заготовок — технически чистая медь и алюминий.

Методом холодной прокатки получают биметаллические листы, полосы (карточная и рулонная прокатка). Степень обжатия при сварке прокаткой 60—75 %.

В связи с необходимостью создания в зоне соединения направленного течения металла эта специфика процесса накладывает определенные ограничения на соотношения толщин исходных заготовок. В связи с этим получить листовой материал при толщине больше 4 мм и малой толщине плакирующего слоя затруднительно или вовсе не представляется возможным. Для электротехнической промышленности получают слоистый материал с минимальной толщиной медного покрытия 0,1 — 0,8 мм.

Принципиальных ограничений на размеры сечений при сварке встык, кроме возможностей самого оборудования, нет. Реально сваривают элементы с площадью сечения до 1000 мм2. Техника подготовки и сварки не отличается от общих технологических закономерностей холодной сварки.

При этом способе сварки образование интерметаллидов исключено, так как процесс идет без предварительного нагрева.

Сварка трением и ультразвуковая применяется для более широкой номенклатуры свариваемых алюминиевых и медных сплавов. Основная особенность, присущая этим методам, состоит в том, что в силу их специфики из зоны соединения непрерывно идет эвакуация нежелательных продуктов взаимодействия материалов (интерметаллидов). При сварке трением меди со сплавом АМц на шлифах наблюдается прерывистая узкая ( ∼ 1,5 мкм) зона интерметаллидов.

При ультразвуковой сварке соединение выполняется внахлестку точками или непрерывным швом. В силу специфики процесса толщина заготовки, со стороны которой подводятся колебания, ограничена величиной порядка 1,2—1,5 мм из-за гистерезисных потерь в толще материала.

Диффузионная сварка дает доброкачественные соединения при сварке Сu с Аl и некоторыми его сплавами при максимально возможном ограничении температуры нагрева, времени сварки и при использовании барьерных подслоев и покрытий. В качестве материала таких слоев могут быть использованы Zn, Ag, Ni.

Сварка плавлением может осуществляться только в том случае, когда обеспечивается в основном плавление алюминия. Это может позволить получать в шве металл с ограниченным (6—8%) содержанием меди, что обеспечивает оптимальное сочетание свойств соединений. Основные пути решения задачи: применение рюмкообразной разделки кромок, снижение опасности перегрева металла в корне шва, легирование металла шва Si, Zn, использование барьерных подслоев.

Нанесение на медную кромку электролитическим путем слоя цинка толщиной порядка 60 мкм при аргонодуговой сварке позволяет снизить содержание меди в шве до 1 % и в 3—5 раз уменьшить протяженность интерметаллидной прослойки со стороны меди (до 10—15 мкм). Кромка медной заготовки при этом разделывается под углом 60°. Введение Zn через присадку при аргонодуговой сварке под флюсом приводит к тому, что содержание меди не превышает 12%, а количество цинка в шве может достигать 30 %. Соединения, получаемые в таких случаях, разрушаются при испытании по алюминию вдали от шва.

Электролитическое нанесение на медную кромку слоя олова или цинка при сварке металла малой толщины (3—8 мм) позволяет получать доброкачественные соединения, так как слой покрытия, выполняющий роль барьера, кроме того, создает перед движущейся волной жидкого металла прослойку, облегчающую смачивание поверхности расплавом алюминия.

Применение более жестких режимов сварки (больших, чем необходимо для сварки алюминия) способствует получению удовлетворительного качества соединения. С уменьшением скорости сварки увеличивается переход меди в шов, растет время пребывания зоны контакта материалов при температуре интенсивного роста интерметаллидов. Рекомендуется выбирать погонную энергию из соотношения q/v=(18,8—20,9)δ, где δ — толщина свариваемого материала.

Смещение электрода в сторону более теплопроводной меди должно составлять (0,5—0,6)δ.

Сварка меди с титаном

Особенностью металлургического взаимодействия Ti с Сu, оказывающего влияние на условия и саму возможность получения соединений между ними и качество соединения, является способность этих металлов вступать в химическое взаимодействие с образованием интерметаллидов состава Ti2Cu (39,88 % Сu), TiCu (57,0% Сu), TiCu3 (79,92 % Сu), давать легкоплавкие эвтектики при концентрации меди 66 и 43 % с температурой плавления соответственно 855 и 955 °С. Титан и медь образуют систему с ограниченной растворимостью и эвтектоидным распадом β-фазы. Максимальная растворимость меди в α-титане и β-титане составляет 2,1 и 13,4 % при 990 °С. Растворимость Ti в Сu при 400 °С 0,4 %. Поэтому в условиях сварки плавлением, когда материал обеих заготовок находится в жидком состоянии, в металле шва при кристаллизации будут неизбежно появляться интерметаллиды и легкоплавкие эвтектики. Последнее обстоятельство сопряжено с опасностью возникновения трещин. Рассматриваемые материалы резко отличаются по температурам плавления и другим теплофизическим характеристикам.

В связи с указанными металлургическими и физическими особенностями для этой пары материалов наибольшие перспективы имеют процессы сварки давлением. Применение методов сварки в жидкой фазе возможно при условии плавления только медной заготовки (режим сварко-пайки) с ограничением продолжительности контакта расплава с твердым металлом или с использованием промежуточных вставок, играющих роль барьера.

Диффузионная сварка без применения промежуточных барьерных слоев возможна в узком диапазоне режимов и дает соединения с низкой прочностью. Для получения равнопрочного соединения используют прослойки из ванадия, молибдена, ниобия.

При сварке ОТ4, ВТ14 с медью Ml и бронзой БрХ0,8 используются прослойки из Мо и Nb толщиной 0,1—0,2 мм в виде фольги или напыленного слоя. В последнем случае после напыления на Ti проводят отжиг в вакууме при температуре 1300 °С в течение 3 ч. Применение этих материалов обусловлено тем, что они с Ti образуют твердые растворы, а с Сu не дают хрупких фаз. При диффузионной сварке лучшие результаты получены при использовании радиационного (печного) нагрева. Температура нагрева 950—980 °С. Продолжительность 0,5—5 ч. Более высокие температуры и продолжительность относятся к печному нагреву.

Сварка плавлением ведется с расплавлением только меди. Использование жестких режимов способствует сокращению времени контакта расплава с твердым титаном.

Электронно-лучевая сварка на жестких режимах дает соединения с удовлетворительными механическими свойствами только на тонких листовых заготовках. При аргонодуговой сварке предварительное напыление плазменным методом медного покрытия толщиной 0,15—0,25 мм на титановую кромку, смещение электрода от оси стыка в сторону Сu на 2,5—4,5 мм и разделка титановой заготовки под углом 45° несколько улучшают условия формирования шва, но не предотвращают полностью появления интерметаллидов. При последующем нагреве такого соединения до 400—500 °С резко снижается прочность и пластичность.

Радикальным решением при сварке плавлением является применение вставок из Nb или Та. При электронно-лучевой сварке получают соединения с высокой пластичностью (угол загиба 180°). При АДС этот показатель составляет 120—160°. Ударная вязкость на уровне 700—800 кДж/мм2. Разрушение при испытании сварных соединений происходит по границе с медным сплавом.

Сварка меди с тугоплавкими металлами

Медь с молибденом взаимно нерастворимы, но жидкая медь способна смачивать его поверхность. Поэтому для получения соединения этого сочетания материалов нашли применение сварко-пайка, диффузионная и электронно-лучевая сварка. В электронной промышленности получил распространение способ заливки в специальные оправки в вакууме расплавом меди молибденового стержня с последующим изготовлением из полученной заготовки деталей механической обработки.

Сварка Сu с Nb осложнена значительным различием в температурах плавления и теплопроводности и различной реакцией на присутствие водорода. Поэтому для сварки плавлением пригоден только Nb с низким содержанием водорода. Nb с Сu образует ограниченные растворы. При 950 °С в Ni растворяется 2,2 % меди.

При аргонодуговой сварке вольфрамовый электрод располагают над медной кромкой при небольшом ее превышении над кромкой второй заготовки (порядка 0,2—0,25 мм). При электронно-лучевой луч смещают в сторону медной заготовки порядка 0,75 ее диаметра. Процесс сварки критичен к точности сборки и расположению пятна нагрева на изделии. В случае отклонения — непровары, прожоги, подрезы. Из-за высокой теплопроводности расплав быстро кристаллизуется и в шве могут фиксироваться выделяющиеся пузырьки газа. Этот дефект устраняется при повторном переплаве.

Сварные соединения, выполненные аргонодуговой и электронно-лучевой сваркой, равнопрочны основному материалу (разрушение при испытании идет по меди) и достаточно пластичны (угол загиба 120—180°).

Сварные соединения W с Сu, выполненные диффузионной сваркой непосредственно, имеют низкую прочность. Подслой Ni позволяет получать сварные соединения с уровнем прочности до 133 МПа (температура сварки 700 °С, сварочное давление порядка 15 МПа, время сварки 15 мин). При этом значительно увеличивается усталостная прочность соединения в условиях термоциклирования.

www.autowelding.ru

Пайка алюминия с медью своими руками в домашних условиях

Пайка алюминия всегда являлась достаточно сложным технологическим процессом, так как температура его плавления считается относительно низкой, а свойства соединения находятся на не самом высоком уровне. Пайка алюминия с медью становится еще более сложным и проблематичным процессом, так как медь туго плавится, хотя и нормально поддается пайке. Несмотря на сложность процесса, в нем периодически возникает потребность в различных производственных сферах и даже в домашней обстановке. В нормальных условиях, без каких-либо дополнительных средств и со стандартными материалами, получить качественное соединение и не повредить при этом металл заготовки будет практически невозможно.

Пайка алюминия с медью своими руками

Пайка алюминия с медью своими руками

Пайка меди с алюминием требует особого подхода, так как тут даже стандартный припой для пайки алюминия окажется неэффективным. Стоит сразу отметить, что у алюминия именно с медью получается большая конфликтность, так как со сталью процесс спаивания лучше. Этим пользуются многие мастера при создании сложных соединений. Необходимость в такой пайке возникает как при соединении труб или других крупных деталей, так и при контактах проводов, что с технической стороны происходит легче, проще и быстрее, так как нет больших нагрузок на конечное изделие.

Пайка алюминия с медью своими руками в домашних условиях

Пайка алюминия с медью своими руками в домашних условиях

Преимущества

  • Позволяет сделать сложное соединение, которое требует технология эксплуатации;
  • Существует несколько различных способов, как произвести процесс, которые заметно отличаются друг от друга;
  • Дает мастеру большой опыт и возможность работы с любыми видами металла.

Недостатки

  • Высокий процент брака после завершения процесса;
  • Пайка алюминий-медь требует большого количества различных дополнительных материалов, многие из которых являются узкоспециализированными, без которых невозможно получить качественное соединение;
  • Иногда необходимо подбирать стальные муфты того же диаметра, что и свариваемые трубы;
  • Процесс пайки оказывается весьма дорогостоящим благодаря использованию флюсов, специальных припоев и других дополнительных средств;
  • Многие из дополнительных расходных материалов находятся в трудном доступе, так как не относятся к распространенным и часто употребляемым;
  • Далеко не каждый метод пайки из существующих оказывается подходящим для конкретного случая;
  • Справиться с работой может только мастер с большим опытом и в домашних условиях это трудноосуществимый процесс.

Трудности пайки

Основная трудность пайки заключается в том, что металлические изделия из этих материалов не могут нормально соединиться, так как даже при схватывании припоя шов может треснуть даже при относительно небольшом механическом воздействии. Положение усложняется оксидной пленкой алюминия, которая обволакивает материал припоя, мешая нормальному соединению, а также не плавится от температурного воздействия. С этим может помочь в борьбе хорошая очистка и обработка растворителем с последующим нанесением специализированного флюса.

Пайка алюминия с медью своими руками

Пайка алюминия с медью

Работа с медью также получается не простой в данном случае. Ведь даже припой для пайки медных труб оказывается не совсем подходящим для такого процесса. Он является тугоплавким, что и требуется для такого металла. В то же время алюминий может иметь более низкую температуру плавления, что приведет к его прогоранию прежде, чем расплавится сам припой. Таким образом, пайка алюминия с медью твердым припоем оказывается достаточно проблематичной. Припой для плавки алюминия может не подойти для меди, так как оказывается слишком легкоплавким, но это уже более подходящий вариант, так как многие мастера, особенно при работе в домашних условиях, используют серебряные припои.

Возможные способы пайки алюминия с медью

Пайка алюминия с медью в домашних условиях и на производстве может проводиться следующими способами:

  • Пайка с помощью муфты. В данном случае между металлами вставляется стальная часть, так что и медь и алюминий припаиваются с различных сторон стали более удобными способами, что помогает получить надежное соединение, так как со сталью и другими сплавами они взаимодействуют намного лучше, чем между собой.
  • При использовании специальных припоев. Современные разработки, к примеру, как присадочный материал марки Castolin и специально разработанные флюсы к нему, помогают решать многие сложные вопросы. Большим недостатком такого способа является высокая стоимость расходных материалов и слабая распространенность.
Припой для сварки алюминия с медью

Припой для сварки алюминия с медью

 

  • Поверхностная пайка. В данном случае из алюминия делают раструб, чтобы в него могла войти медная трубка. Края этого раструба запаивают легкоплавкими припоями, захватывая большую часть поверхности медной трубы, чтобы увеличит площадь соединения.

Материалы и инструмент

Вне зависимости от того, необходима вам пайка алюминия с медью провода, трубы или листов, для этого понадобятся:

  • Горелка (газовая или бензиновая) или паяльник, в зависимости от условий, в которых это все проводится;
  • Припой, который будет подходить для выбранного способа, так как для пайки через стальную муфту требуются расходные материалы, которые будут рассчитаны на пайку со сталью;
  • Флюс, подобранный под припой, чтобы улучшить взаимодействие с разными металлами;
  • Стальная, или из какого-либо другого сплава, муфта, если выбран именно этот метод;
  • Инструменты для фиксации заготовок и разделки раструба.

Пошаговая инструкция

  1. Осуществляется полная подготовка всех металлических изделий, которые будут принимать участие в пайке. Это включает разделку кромок, подготовку раструба, механическая обработка щеткой и растворителями, чтобы снять все имеющиеся налеты и образовавшиеся пленки.
  2. Затем детали надежно фиксируются, чтобы во время процесса не было ни какого движения и смещения.
  3. На следующем этапе следует обработать концы деталей флюсом.
  4. Далее уже можно приступать к непосредственному спаиванию. Если выбран метод через муфту, то сначала она припаивается к одной заготовке, к примеру, медной трубе. Потом нужно выделить время на остывание и проверку качества, чтобы не было трещин и щелей. Только после этого следует приступать к соединению со второй частью, которое осуществляется точно также, но с помощью других расходных материалов.
  5. После окончания процедур дать шву остыть и проверить полностью готовое изделие на отсутствие брака, прежде чем пускать его в эксплуатацию.

«Важно!

При выборе расходных материалов нужно обращать внимание на прочность получаемого соединения, что особенно важно при работе с трубами, которые эксплуатируются под давлением.»

Таблица режимов

Вид припоя

Режим пайки

Максимальная прочность сплавов, кгс/мм2

АМц

АМг6

Д20

П-300-А

440° С, 20 минут

11

22

П-425-А

12

20,8

20,8

34А

550° С, 20 минут

9-10

28,8

В-62

510° С, 15 минут

12

23,8

Техника безопасности

Работа должна проводиться только в хорошо проветриваемых помещениях, так как испарения флюсов и припоев могут оказаться вредными для человека. При использовании газовой горелки она должна быть максимально удалена от источника огня. На рабочем месте не должны присутствовать лишние предметы, а также легковоспламеняющиеся вещи.

svarkaipayka.ru

Сварка алюминия и меди

Темы: Сварка алюминия, Сварка меди, Технология сварки, Сварные соединения.

Диаграмма состояния алюминий - медь свидетельствует, что в этой системе существует ряд устойчивых при комнатной температуре химических соединений: Θ-фаза (AI2Cu), η-фаза (AICu), ε2-фаза, δ-фаза (AI2Cu3), γ2-фаза (AlCu2), γ-фаза (AI4CU9), Они характеризуются высокой твердостью и низкой пластичностью. При комнатной температуре медь обладает сравнительно малой растворимостью в алюминии, несмотря на сходство в кристаллическом строении этих металлов.

Другие страницы, по теме

Сварка алюминия и меди

:

В сравнении с сочетанием алюминия с другими металлами (например, никелем, железом) для взаимодействия алюминия с медью характерны большие скорости роста прослоек интерметаллидов и малая продолжительность латентного периода. Температурная зависимость последнего имеет вид

τп = 3,8 * 10-8 ехр(130 / RT).

Кинетика роста промежуточных фаз описывается уравнением

у =9,1*105 ехр(100 / RT)τ - 3,46 * 102 ехр(30 / RT).

Эта зависимость хорошо согласуется с экспериментальнымиданными.

Наличие латентного периода позволяет получать высококачественное соединение непосредственно алюминия с медью, такими методами сварки давлением, которые используют относительно невысокие температуры при малой продолжительности воздействия. Отмеченные закономерности возникновения и роста интерметаллидных прослоек ведут к тому, что для каждого способа существует достаточно узкий диапазон значений технологических параметров режимов сварки и температурновременных условий эксплуатации биметаллического соединения. Работа биметалла Аl + Cu допускается при температуре, не превышающей 400oС, во избежание интенсивного роста диффузионного слоя и резкого ухудшения механических свойств. При нагреве выше указанной температуры в соединении алюминий + Л96 по мере ее роста и увеличения продолжительности выдержки образца идет образование δ-фазы, которая диффундирует в латунь, в результате чего появляются γ2-фаза и α-твердый раствор. Насыщение δ-фазы с другой стороны алюминия ведет к образованию Θ-фазы.

В связи с тем что существуют достаточно пластичные сплавы системы Аl - Cu, содержащие до 7 % Cu, и бронзы с содержанием до, 10% Аl перспективно такое ведение процесса сварки плавлением, когда содержание меди в сварном шве не будет превышать 6 ... 8 %.

Хорошей растворимостью в рассматриваемых материалах обладают серебро, цинк, кремний. Их бинарные диаграммы состояния достаточно просты. При нормальной температуре алюминий с цинком и кремнием являются двухфазными, образуя эвтектику. В системе AI - Ag установлено существование α-, β-, γ-, δ-фаз и соединения Ag3Al. Серебро хорошо растворимо как в алюминии, так и в меди. Содержание цинка в алюминии при 275oС составляет 31,6 %, в меди - 38 % (454oС). Растворимость кремния в алюминии 1,65 % (577oС), в меди - 5,2 % (548oС).

Склонность к образованию химических соединений - основной осложняющий фактор при сварке алюминия с медью. Особенности сочетания физических свойств меди и алюминия таковы, что в большинстве случаев не вызывают дополнительных осложнений. Так, разница в 1,5 раза коэффициентов термического расширения не при водит к опасности разрушения соединения, так как оба материала высокопластичны. При изменении температуры оба материала проявляют одинаковые тенденции к изменению механических свойств, при низких температурах сохраняют высокую пластичность. Коэффициент тепло- и температуропроводности меди с повышением температуры в диапазоне 0 ...600oС несколько снижается, а для алюминия возрастает почти в 2 раза в диапазоне 150...600oС. При 500oС значение коэффициента теплопроводности выравнивается, а при дальнейшем росте температуры значение этого параметра для алюминия становится выше.

Оксиды меди менее химически стойки. Упругость паров диссоциации для Cu2O при 727oС составляет 1,8 . 10-1 Па, для CuО при 900oС равна 1,18 . 10-3 Па, для АI2O3 при 727oС 1,5 . 10-15 Па. Толщина оксидной пленки на меди в 1,5 - 2 раза больше, чем на алюминии. На воздухе при нагреве СuО стремится перейти в Сu2O.

Сварка алюминия и меди проводится различными методами сварки давлением и плавлением.

Сварка давлением осуществляется методами холодной сварки, прокаткой, трением, ультразвуком, диффузионной, магнитно-импульсной, взрывом.

Холодная сварка алюминия и меди применяется главным образом для местного плакирования алюминиевых деталей медью (токоведущие элементы трансформаторов, шинопроводы, токоподводы к электролизерам) точечной сваркой, получения стыковых соединений проводов, шин и других элементов компактных сечений. Материал заготовок - технически чистая медь и алюминий.

Методом холодной прокатки получают биметаллические листы, полосы (карточная и рулонная прокатка). Степень обжатия при сварке прокаткой 60 ... 75 %.

В связи с необходимостью создания в зоне соединения направленного течения металла эта специфика процесса налагает определенные ограничения на соотношения толщин исходных заготовок. В связи с этим получить листовой материал при толщине >4 мм и малой толщине плакирующего слоя затруднительно или невозможно. Для электротехнической промышленности получают слоистый материал с минимальной толщиной медного покрытия 0,1 ... 0,8мм.

При местном плакировании медью алюминиевых деталей точечной холодной сваркой глубина вдавливания пуансона в 2 - 3 раза превышает толщину плакирующей меди. Особых ограничений на толщину алюминиевых деталей в этом случае нет. Недостаток метода наличие вмятин от инструмента на поверхности детали.

Принципиальных ограничений на размеры сечений при сварке встык, кроме возможностей самого оборудования, нет. Реально сваривают элементы с площадью сечения до 1000 мм 2. Техника подготовки и сварки не отличается от общих технологических закономерностей холодной сварки.

При этом способе сварки образование интерметаллидов исключено, так как процесс идет без предварительного нагрева.

Более широкая номенклатура толшин и материалов заготовок для изготовления слоистых листов может быть получена горячей прокаткой. Заготовки при этом нагревают до 450°С. Для защиты металла (меди) от окисления используют двухстадийный процесс: предварительное обжатие при первом проходе на 65 ...80 % от суммарного обжатия для уменьшения контакта с воздухом рабочей поверхности медной заготовки; прокатку нагретого пакета в вакууме, вакуумированных конвертах, аргоне.

Распространен способ горячей про катки, когда нагреву подвергается только алюминиевая заготовка, а холодные плакирующие медные листы накладываются непосредственно перед операцией обжатия. Такой прием снижает степень окисления. Обжатие ведется двухстадийно: на первом проходе 40.. .45 %. Суммарное обжатие 75 %.

Горячей прокаткой получают плакированный алюминий при толщине медного слоя 1,5 ... 2,5 мм. Для улучшения механических свойств (повышения предела прочности >100 МПа и угла загиба до 110... 180°) многослойные листы подвергаются термической обработке при температуре 250...270оС в течение 2 ... 8 ч.

Положительные результаты дает использование барьерного слоя из аустенитной стали (12Х18Н10Т), позволяющего избежать охрупчивание и сохранить прочность алюмомедного листа даже после нагрева до 500оС.

При сварке трением и ультразвуковой номенклатура свариваемых алюминиевых и медных сплавов шире. Основная особенность, присущая этим методам, состоит в том, что в силу их специфики из зоны соединения непрерывно идет эвакуация нежелательных продуктов взаимодействия материалов (интерметаллидов). При сварке трением меди со сплавом АМц на шлифах наблюдается прерывистая узкая (1,5 мкм) зона интерметаллидов.

Сварка трением налагает ограничения на конфигурацию сечения заготовок.

Для получения высококачественного соединения необходимыми условиями являются перпендикулярность поверхности торца к оси заготовки и предварительное снятие наклепа путем отжига, удаления окалины и обезжиривания трущихся поверхностей. Алюминиевую заготовку размещают в осадочной матрице, что позволяет компенсировать различия в пластических свойствах свариваемых материалов. Цикл давления - ступенчатый. Проковка дает дополнительные возможности разрушения и частичной эвакуации из плоскости стыка интерметаллидной прослойки. Для диаметров заготовок 20 ... 30 мм давление при нагреве и осадке соответственно 30.. .40 и 110...200 МПа. Суммарная осадка 14 ...20 мм. Получаемое соединение при испытаниях разрушается по алюминию.

При ультразвуковой сварке соединение выполняется внахлестку точками или непрерывным швом. В силу специфики процесса толщина заготовки, со стороны которой подводятся колебания, ограничена величиной порядка 1,2 ... 1,5 мм из-за гистерезисных потерь в толще материала.

Диффузионная сварка меди с алюминием и некоторыми его сплавами дает доброкачественные соединения при максимально возможном ограничении температуры нагрева, времени сварки и при использовании барьерных подслоев и покрытий. В качестве материала таких слоев можно использовать цинк, серебро, никель.

При сварке взрывом из-за кратковременности взаимодействия материалов при высоких температурах интерметаллиды не успевают образоваться или их количество незначительно. Сварные швы обладают высокими механическими свойствами. Прочность соединения при этом выше прочности основного материала в результате наклепа и большей протяженности поверхности сцепления из-за ее волнистости. Процесс позволяет получать нахлесточные соединенная в различных вариантах по практически любой площади. Ограничения налагаются на максимальную толщину метаемой заготовки из-за опасности ее разрушения при образовании второго перегиба в процессе деформирования под воздействием продуктов разложения взрывчатых веществ (ВВ). Ограничения на минимальную толщину заготовки связано с появлением нестабильности процесса детонации при чрезмерном уменьшении толщины слоя ВВ.

Магнитно-импульсная сварка алюминия и меди имеет схожую со сваркой взрывом при роду образования соединения, что позволяет получать доброкачественные соединения с минимальным количеством интерметаллидной фазы. Наиболее просто свариваются телескопические соединенная. Толщина и диметр заготовок ограничены возможностями оборудования (главным образом емкостью конденсаторных батарей, долговечностью индуктора). Реально сваривают трубные заготовки диаметром до 40 мм при толщине стенки порядка 1,0 ... 0,2 мм.

Сварка плавлением может осуществляться только в том случае, когда обеспечивается в основном плавление алюминия. Это может позволить получать в шве металл с ограниченным (6 ... 8 %) содержанием меди, что обеспечивает оптимальное сочетание свойств соединений. Основные пути решения задачи: применение рюмкообразной разделки кромок, снижение опасности перегрева металла в корне шва, легирование металла шва рением, цинком, использованиебарьерных подслоев.

Нанесение на медную кромку электролитическим путем слоя цинка толщиной порядка 60 мкм при аргонодуговой сварке позволяет снизить содержание меди в шве до 1% и в 3 - 5 раз уменьшить протяженность интермегаллидной прослойки со стороны меди (до 10 ... 15 мкм). Кромка медной заготовки при этом разделывается под углом 60°. Введение цинка через присадку при аргонодуговой сварке под флюсом при водит к тому, что содержание меди ≤12 %, а количество цинка в шве может достигать 30%. Соединения, получаемые в таких случаях, разрушаются при испытании по алюминию вдали от шва.

Электролитическое нанесение на медную кромку слоя олова или цинка при сварке металла малой толщины (3 ... 8 мм) позволяет получать хорошие соединения, так как слой покрытия, выполняющий роль барьера, кроме того создает перед движущейся волной жидкого металла прослойку, облегчающую смачивание поверхности расплавом алюминия.

Есть опыт создания более сложных покрытий: нанесение электролитическим путем на медную заготовку слоя никеля толщиной порядка 50 мкм и затем алитирование в расплаве алюминия (Т = 810 ...820оС, время 10 ... 20 с). Возможно покрытие поверхности меди оловом или свинцово-оловянистым припоем методом лужения.

Легирование шва кремнием при аргонодуговой сварке проводят через присадочный металл (проволока типа АК5).

Применение более жестких режимов сварки, чем необходимо для сварки алюминия, способствует получению удовлетворительного качества соединения. С уменьшением скорости сварки увеличивается переход меди в шов, растет время пребывания зоны контакта материалов при температуре интенсивного роста интерметаллидов. Рекомендуется выбирать погонную энергию из соотношения: q / V = (18,8 ... 20,9)δ, где δ - толщина свариваемого материала.

Смещение электрода в сторону более теплопроводной меди должно составлять (0,5 - 0,6) δ.

  • < Свариваемость меди
  • Сварка меди >

weldzone.info

обзор методов — Троицкий вариант — Наука

Актуальность

Электромобили сегодня обсуждаются повсеместно. Немецкая автомобильная промышленность и предприятия снабжения активно адаптируются к новым разработкам. Создаются новые производства, в частности в области производства аккумуляторов.

Эффективная сварка алюминия с медью становится одной из центральных технических задач в сфере электромобилестроения. Компания METROM mechatronische maschinen GmbH ( имеет многолетний опыт соединения тугоплавких материалов и сплавов, которые не могут быть обработаны методом традиционной сварки плавлением, и способна предложить промышленности новые технологии соединения в области решения различных задач с участием меди и алюминия.

Процесс 1: Лазерная сварка динамическим отражением луча

Сварка разнородных материалов позволяет оптимально использовать их специфические качества. Лазерная сварка обеспечивает экономичный способ соединения комбинированных материалов. Однако различия термофизических характеристик и свойств материалов могут приводить к снижению качества сварки, поскольку возникающие интерметаллические фазы способны значительно ослабить прочность соединения.

Данная технология использует отражение яркого лазерного луча быстро вращающимися зеркалами для проекции на зону сварки. Высокая фокусируемость лазерных лучей позволяет добиться очень узкого сварочного шва, пропорционального соотношения сторон, сверхкороткого цикла сварочной ванны. Заготовка испытывает воздействие относительно небольшой энергии, что снижает продолжительность нестабильных интерметаллических фаз.

Такие результаты были достигнуты в рамках проекта федерального министерства образования и научных исследований Германии (BMBF) «WELDIMA — исследование и развитие лазерных и волновых сварочных технологий для разнородных материалов».

Рис.1. Лазерное плавление Al-Cu заготовок

Рис.2. Микрошлиф Al-Cu заготовок после лазерного плавления

Процесс 2: Cварка трением с перемешиванием (FSW)

Сварка трением с перемешиванием — это технология механического соединения материалов в твердой фазе. Технология позволяет избежать такие нежелательные явления при плавлении металлов как продолжительные интерметаллические фазы.

Вращающийся инструмент оказывает давление на поверхность материала в зоне стыка при помощи заплечника и вызывает пластификацию металла за счет импульсного нагревания. Наконечник, внедренный в заготовку, регулирует перемещение материала. Термомеханическая сварка позволяет получить мелкозернистый шов с высокими показателями прочности.

Данный процесс был реализован компанией METROM на 5-ти осевом обрабатывающем центре с технологией параллельной кинематики.

Обрабатывающий центр выполняет 5-ти координатную сварку трением с перемешиванием сложных материалов и предварительную механическую обработку поверхностей стыка.

Преимущества метода сварки трением с перемешиванием:

  • соединение тугоплавких материалов, не поддающихся традиционным методам сварки
  • минимальная деформация заготовок
  • дополнительный присадочный материал не требуется
  • возможна сварка разнородных материалов

Преимущества концепции нового оборудования:

  • упрощенная и экономичная наладка оборудования
  • обширная рабочая зона
  • высокая жесткость и точность позиционирования
  • отзывчивое и гибкое управление

Сравнение сварочных методов:

Лазерная сварка отраженным лучом

Сварка трением с перемешиванием (FSW)

При лазерной сварке отраженным лучом сварка характеризуется контролируемой жидкой фазой, в случае сварки трением с перемешиванием — сварка происходит в твердой фазе.

Лазерная сварка отраженным лучом используется при изготовлении тонкостенных заготовок. Например, контактирование алюминия и меди в литий-ионных аккумуляторах. Другие материалы: Al + Mg, нержавеющая сталь + медь.

Сварка трением с перемешиванием (FSW) применяется для сложных линейных соединений, литейного алюминия, например для корпусов. Другие материалы: Al + Mg.

Cварка трением с перемешиванием технологией Pentapod

Рис.3. Cварка трением с перемешиванием технологией Pentapod

Лазерное индукционное плакирование винтовой прокаткой лент Al-Cu

Рис.4. Лазерное индукционное плакирование винтовой прокаткой лент Al-Cu

Процесс 3: Лазерное индукционное плакирование прокаткой

Композитные заготовки из алюминия и меди, созданные для конкретных потребностей промышленности, могут открыть новые конструктивные возможности для разработки компонентов электроприводов, сделав их максимально компактными, легкими и устойчивыми к высоким механическим нагрузкам.

Процедура лазерного индукционного плакирования прокаткой, разработанная METROM, позволяет создавать такие композитные заготовки. Соединение алюминиевой и медной лент выполняется в процессе разовой прокатки с низкой деформацией (< 11 %). Уникальность технологии состоит в комбинировании традиционной дотермической обработки обеих лент и линейном лазерном луче. Он разогревает внутренние стороны лент до температуры необходимой для плакирования именно перед раствором валков. Так, например, эта технология хорошо подходит для производства биметаллических соединительных гильз (соединительных муфт). Локальная деформация дает относительно большую свободу при комбинировании заготовок, геометрия которых может не совпадать.

Результаты были получены в рамках проекта «DeLIZ — Производственно-технический демонстрационный центр для литий-ионных решеток», финансируемого федеральным министерством образования и научных исследований Германии.

Лазерное индукционное плакирование прокаткой

Лазерное индукционное плакирование прокаткой представлчет собой соединение методом деформации и локального повышения температуры. Используется для лентовых заготовок, в перспективе нанесение ленты на профиль. Например, сварка Al-Cu соединителей для литий-ионных решеток. Другие материалы: сталь + сталь, Al + сталь, Cu + сталь.

Электромагнитная импульсная сварка

Электромагнитная импульсная сварка — связывание атомов без зоны термического воздействия. Хорошо подходит для заготовок с симметричным вращением. Например, трубы, валы, прочные резервуары. Другие материалы: Al + сталь, Cu + сталь, Al + Ti.

Микрошлиф стыка Al-Cu методом электромагнитной импульсной сварки

Рис.5. Микрошлиф стыка Al-Cu методом электромагнитной импульсной сварки

Соединение заготовок Al-Cu

Рис.6. Соединение заготовок Al-Cu

Процесс 4: Электромагнитная импульсная сварка

При создании зоны высокого давления электромагнитный импульс позволяет выполнить соединение практически без фазы плавления для большинства металлических заготовок.

Принцип технологии позволяет избежать возникновения интерметаллических фаз в зоне стыка. Так при соединении разнородных материалов разница точек плавления, толщины и теплопроводимости становится некритической. Локальное давление создается посредством бесконтактного воздействия электромагнитного поля.

Кроме того, данная технология открывает возможность экономически эффективной бесконтактной формовки металлов и производства высокопрочных соединений.

Сварка на атомном уровне позволяет выполнять обработку с заданными параметрами. Данная технология хорошо подходит для обработки труб и валов, продольная сварка также возможна. Обычно толщина стенки одной из свариваемых заготовок не должна превышать 2-4 мм. Сварочные швы испытывают крайне низкое влияние температуры и не попадают в зону теплового воздействия.

В дополнение к исследованию технологии IWS также изучает способы повышения качества соединений за счет точного подбора инструментов и геометрии выполнения сварки.

Данное исследование финансируется Европейским фондом регионального развития и федеральной землей Саксонией.

Переходное электрическое сопротивление комбинаций Al-Cu

Переходное электрическое сопротивление комбинаций Al-Cu

Для дополнительных консультаций, пожалуйста, обращайтесь в компанию «ИНТЕРТУЛМАШ», которая является официальным представителем и поставщиком продукции и услуг компании METROM mechatronische maschinen GmbH в России и СНГ.

Ссылка на страницу компании METROM на русском языке:

https://www.itmash.ru/METROM

Контактная информация:

Телефон: +7 (495) 668-13-58

email: [email protected]

сайт: www.itmash.ru

Рис.1. Лазерное плавление Al-Cu заготовок

Рис.2. Микрошлиф Al-Cu заготовок после лазерного плавления

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Связанные статьи
  • Нет связанных статей.
Оценить:  Загрузка...

trv-science.ru

Сварка алюминия и его сплавов с медью

сварка алюминия медиКроме того, что сварка этих двух металлов затруднена благодаря физико-химическими различиями, сварочный процесс также затруднен образованием некой хрупкой интерметаллической фазы.

Как правило, сварка алюминия или его сплавов с медью, выполняется с помощью вольфрамовых электродов в аргоновой среде, а также под слоем флюса. Дл того чтобы улучшить процесс сварки, на поверхность меди, после предварительной её очистки, наносится специальный слой покрытия, который в дальнейшем активирует поверхность и металла, который является более тугоплавким. Также, при всем при этом, этот слой улучшит смачиваемость поверхности меди, слоем алюминия. В данном случае, одним из наиболее лучших компонентов, является цинковое покрытие, имеющее толщину 50-60 мм, которое наносится специальным гальваническим методом.

Технология сварки алюминия и меди,  а также алюминиевых сплавов, мало чем отличается от процесса сваривания алюминия и стали. В этом случае, дуга также смещается на металл, который имеет более высокий показатель теплопроводности. Однако в данном случае, данным металлом выступает медь, а не сталь. Так, дуга смещается, примерно на 0,5-0,6 толщины всего свариваемого металла.

Прочность сварного соединения, которое возникает после сварки, примерно равна прочности алюминия в его чистом техническом виде (примерно, 80-100 МПа). При этом, удельное электрическое сопротивление шва будет несколько выше, около 0,037 Ом*м, чем у чистого алюминия, сопротивление которого равно 0,0313 Ом*м. Это может сказаться в случае, если сварка алюминия и меди используется в электротехнической промышленности, но в целом, данные показания не слишком влияют на электрические параметры и погрешности. Важно, чтобы сварные соединения алюминия и меди сохраняли и не меняли собственную прочность, даже при длительном нагреве, если температура будет составлять 150 и менее градусов Цельсия. Во время более высокого нагрева, прочность будет существенно падать.

сварка алюминия меди

Как уже и говорилось ранее, на границе соединения алюминия и меди, будет образовываться небольшая прослойка, состоящая из интерметаллидов, толщина которых составляет 3-10 мкм. В целом, это достаточно низкий показатель, который не влияет на характеристики соединения. Интерметаллиды, которые образовываются на стороне меди, могут иметь микротвердость в 4500-5500 HV, и это может обуславливать немного низкую прочность соединения со стороны меди, но как и указывалось только что, существенные изменения в качество сварочного соединения, интерметаллиды не приносят.

www.vse-o-svarke.org

Сварка алюминия и его сплавов с медью

Сварка алюминия и его сплавов с медью затруднена значитель­ными различиями их физико-химических свойств и образованием хруп­кой интерметаллидной фазы. Для облегчения процесса сварки на медь после ее очистки необходимо нанести слой покрытия, который улучша­ет смачиваемость меди алюминием. Лучшим является цинковое покры­тие толщиной 50-60 мк, которое наносится гальваническим методом. Технология сварки алюминия с медью производится по той же схеме, что и сварка со сталью. Дуга смещается на более теплопроводный мате­риал (здесь - медь) на 0,5 толщины свариваемого металла. На границе соединения образуется со стороны меди прослойка интерметаллидов (СиА12) толщиной 3-10 мк, а со стороны алюминия - полоска твердого раствора меди в алюминии такого же размера.

Прочность соединения повышается при легировании металла шва кремнием (4-5 %) и цинком (6-8 %), которые подавляют рост интерме- таллидной прослойки. Для обеспечения стабильной прочности сварных соединений по свариваемой кромке меди нужно делать скос под углом 45-60° (рис. 8.2).

Рис. 8.2. Сварка алюминия с медью: зависимость авот угла разделки кромки медного листа при V и X - образной разделке кромок

Разработаны: способ автоматической сварки под слоем флюса алюми­ния с медью при толщине металла 8, 10, 12, 20 мм и способ аргоно дуговой сварки. При обоих способах предел прочности алюминия (7-10 кг/мм), удельное сопротивление шва несколько выше (р=0,037 Ом-мм /м), чем у алюминия (р=0,0313 Оммм2/м). Прочность соединений не изменяется при длительном нагреве до 150 °С. Алюминий и медь свариваются меж­ду собой также и методами сварки давлением (холодная сварка). Освое­на и широко применяется контактная сварка алюминия с медью сопро­тивлением и оплавлением. Для уменьшения возможности образования хрупких интерметаллидов в этом случае рекомендуется медь цинковать или алитировать, а иногда и покрывать слоем серебряного припоя. Наи­более благоприятные результаты получены при контактной сварке по методу оплавления, так как при этом обеспечивается более полное раз­рушение и удаление хрупких фаз из металла и шва. Прочность соедине­ния при контактной сварке оплавлением 6-7 кг/мм2, угол загиба 180°.

Диффузионная сварка в вакууме алюминия с медью осуществля­ется при 1=450-520 °С, давлении 0,5-1 кг/мм2при вакууме 10-6мм.рт.ст.

Список литературы

  1. Герман С.И. Электродуговая сварка теплоустойчивых ста­лей перлитного класса. - М.: Машиностроение, 1972. - 200 с.

  2. Медовар Б.И. Сварка жаропрочных аустенитных сталей и сплавов. - М.: Машиностроение, 1966. - 430 с.

  3. Земзин В.Н. Сварные соединения разнородных сталей. - М. - Л.: Машиностроение, 1966. - 232 с.

  4. Клячкин Я. Л. Сварка цветных металлов и их сплавов. - М.: Машиностроение, 1964. - 335 с.

  5. Акулов А. И., Алехин В. П., Ермаков С. И. и др. Технология и оборудование сварки плавлением и термической резки. - М.: Машино­строение, 2003. - 560 с.

  6. Бубенщиков Ю.М., Федько В.Т. Сварные конструкции. Рас­чет и проектирование. - Томск: Изд-во Том. ун-та, 2001. - 190 с.

  7. Шоршоров М.Х., Чернышова Т. А., Красовский А.И. Испы­тания металлов на свариваемость. - М.: «Металлургия», 1972. - 240 с.

  8. Шоршоров М.Х., Белов В.В. Фазовые превращения и изме­нения свойств стали при сварке. - М.: «Наука», 1972. - 219 с.

  9. Словарь-справочник по сварке / Под редакцией акад. Хре­нова К.К. - Киев: Изд-во «Наукова думка», 1974. - 195 с.

А.с. 239013 (СССР). Эмульсия для защиты поверхности сва­риваемого изделия от брызг расплавленного металла / Федько В.Т., Махнев А.П. - Опубл. в Б.И, 1969. - №47.

Навчальне видання

Калін Микола Андрійович

Зварювання спеціальних сталей і кольорових сплавів

Конспект лекцій

Відповідальний випусковий: Резніченко М.К.

Підписано до друку______Формат 60×84 1/16.

Папір офсетний. Ум. друк. арк.______.

Зам. № _____. Наклад__100__прим.

© Калін М.А., 2012

©УІПА, 2012

1

studfiles.net