Применение ацетилена. Сварка ацетиленом. Ацетилен используется для сварки и резки металлов
Применение ацетилена. Сварка ацетиленом
Чтобы понять, где применяется ацетилен, необходимо изучить и понять, что же это такое. Данное вещество представляет собой горючий бесцветный газ. Его химическая формула – С2Н2. Газ обладает атомной массой, равной 26,04. Он немного легче воздуха и обладает резким запахом. Получение и применение ацетилена осуществляется лишь в промышленных условиях. Получают данное вещество из карбида кальция путем разложения компонента в воде.
Чем опасен ацетилен
Применение ацетилена ограничено его необычайными свойствами. Этот газ самовоспламеняется. Происходит это при температуре 335°С, а его смесь с кислородом – при температуре от 297 до 306°С, с воздухом – при температуре от 305 до 470°С.
Стоит отметить, что ацетилен технический взрывоопасен. Это было происходит при:
- Повышении температуры до 450-500°С, а также при давлении в 150-200 кПа, что равно 1,5-2 атмосферам.
- Смесь ацетилена и кислорода при атмосферном давлении также опасна, если ацетилена в ней содержится 2,3-93%. Взрыв может произойти от сильного нагрева, открытого пламени и даже от искры.
- При подобных же условиях происходит взрыв смеси воздуха с ацетиленом, если в ней содержится 2,2-80,7 % ацетилена.
- Если газ долго соприкасается с медным или серебряным предметом, то может образоваться ацетиленистое взрывчатое серебро или же медь. Это вещество очень опасно. Взрыв может произойти от сильного удара или же в результате повышения температуры. Работать с газом следует осторожно.
Особенности вещества
Ацетилен, свойства и применение которого до конца не изучены, в результате взрыва может привести к несчастному случаю и сильнейшим разрушениям. Вот некоторые данные. При взрыве одного килограмма данного вещества выделяется в 2 раз больше тепловой энергии, чем при взрыве такого же количества тротила, а также в полтора раза больше, чем при взрыве одного килограмма нитроглицерина.
Области применения ацетилена
Ацетилен – это горючий газ, который используется при газовой сварке. Нередко его используют для кислородной резки. Стоит отметить, что температура горения смеси кислорода и ацетилена может достигать 3300°С. Благодаря этому свойству вещество чаще других используется при сварке. Ацетиленом обычно заменяют природный газ и пропан-бутан. Вещество обеспечивает производительность и высокое качество сварки.
Снабжение постов газом для резки и сварки может осуществляться от ацетиленового генератора или же от баллонов с ацетиленом. Для хранения данного вещества обычно используют емкости белого цвета. Как правило, на них присутствует надпись «Ацетилен», нанесенная красной краской. Стоит учесть, что существует ГОСТ 5457-75. Согласно данному документу для обработки металлов применяется технический растворенный ацетилен марки Б или же вещество в газообразном виде.
Сварка ацетиленом: проверка
Технология сварки данным газом достаточно проста. Однако при работе с веществом требуется терпение и внимательность. Для сварки обычно используют специальные горелки, с маркировкой 0-5. Ее выбор зависит от того, какой толщиной обладают свариваемые детали. Следует учесть, что чем больше размер горелки, тем больше расход.
Сварка ацетиленом осуществляется только после того, как оборудование будет проверено и отрегулировано. При этом следует обратить внимание на номер наконечника и номер подающей газ форсунки, которая располагается около рукоятки горелки под гайкой. Также следует проверить все уплотнения.
Процесс сварки
Применение ацетилена при сварке должно осуществляться аккуратно и в соответствии с определенными правилами. Для начала горелку следует продуть газом. Это нужно делать до тех пор, пока не появится запах ацетилена. После этого газ поджигается. При этом следует добавлять кислород, пока пламя не станет более устойчивым. Из редуктора на выходе давление ацетилена должно быть от 2 до 4 атмосфер, а кислорода – от 2 атмосфер.
Для сварки черных металлов требуется нейтральное пламя. Оно обладает четко очерченной короной и условно его можно разделить на три яркие части: ядро – ярко-голубой окрас с зеленоватым отливом, восстановленное пламя – бледно-голубого оттенка, факел пламени. Последние две зоны являются рабочими.
Перед началом работы все детали нужно очистить, а затем подогнать друг к другу. При работе с горелкой также применяют левый и правый способ. В последнем случае происходит медленное остывание шва. Присадочный материал, как правило, перемещается за горелкой. При левом способе повышается эластичность и прочность шва. В данном случае пламя направляется от места сварки. Присадочный материал следует вносить в сварочную ванну только после того, как переместится на следующую позицию горелка.
Правила безопасности
Применение ацетилена без навыков и опыта запрещено. Существует несколько правил, которые следует соблюдать при работе с веществом:
- Содержание ацетилена в помещении в воздухе необходимо постоянно контролировать. Для этого следует использовать специальные автоматические приборы, которые способны оповещать о превышении концентрации газа. Этот показатель не должен быть более 0,46 %.
- Области применения ацетилена совершенно разные, но чаще всего его используют при сварке. При работе с баллонами, наполненными именно этим газом, следует соблюдать осторожность. Запрещено размещать емкости вблизи открытого огня или же около отопительных систем. Помимо этого, запрещено работать с баллонами, которые находятся в горизонтальном положении, а также, если они не закреплены и неисправны.
- При работе с ацетиленом следует использовать исключительно неискрящиеся инструменты, электрическое оборудование и освещение во взрывобезопасном исполнении.
- Если происходит утечка ацетилена из баллона, то следует быстро закрыть вентиль емкости. Для этого можно использовать неискрящийся специальный ключ. Определить утечку можно лишь по звуку или же запаху.
Что делать, если возник пожар
Неправильное применение ацетилена может привести к печальным последствиям. Этот газ взрывается и приносит сильное разрушение. Что же делать, если возник пожар?
- При возникновении пожара следует незамедлительно убрать из опасной зоны все емкости, наполненные ацетиленом. Те баллоны, которые остались, следует постоянно охлаждать обычной водой или же специальным составом. Емкости должны полностью остыть.
- Если воспламенился газ, который выходит из баллона, то следует незамедлительно закрыть емкость. Для этого следует использовать неискрящийся ключ. После этого емкость необходимо остудить.
- При сильном возгорании тушение огня следует осуществлять только с безопасного расстояния. В такой ситуации стоит использовать огнетушители, наполненные составом, содержащим флегматизирующую концентрацию азота 70 % по объему, также диоксид углерода 75 % по объему, песок, струи воды, сжатый азот, полотно асбестовое и так далее.
fb.ru
Газовая сварка: какие газы, проволока и флюсы для нее используются?
Газовой сваркой называют процесс соединения металлов при нагреве свариваемых кромок высокотемпературным пламенем, образующимся при сгорании смеси горючего газа и кислорода. Кислород в данном случае выполняет функцию катализатора.
Кислород
При обычной температуре и давлении газ не имеет цвета и запаха. Для сварочных работ востребован технический кислород, добытый из воздуха и обработанный в воздухоразделительных установках, трех сортов:
- высшего, чистота по объему – 99,5%;
- 1-го – 99,2%;
- 2-го – 98, 5% .
Остаток составляют аргон и азот.
При смешении горючих газов или паров горючих жидкостей с кислородом в определенных пропорциях начинается интенсивное горение с выделением большого количества тепла.
Для хранения технического кислорода используют специальные окрашенные в голубой цвет баллоны объемом 40 дм3 (40 л). Надпись «Кислород» сделана черным. Масса такого баллона без колпака и башмака составляет 60 кг.
Внимание! При использовании кислородных баллонов необходимо соблюдать предельную осторожность из-за высокого давления внутри них. Есть еще одна опасность – высокая активность газа при контакте с органическими веществами (маслами или жирами). Чистый кислород – очень сильный окислитель, который при взаимодействии с углеводородами вызывает возгорание с большим выделением тепла, что провоцирует взрыв.
Сколько кислорода содержится в баллоне 40 л?Номинальное давление газа в баллоне при +20°C – 14,7 МПа (по ГОСТу 5583). В таких условиях в него вмещается 6,3 м3 кислорода, по массе – 8,3 кг.
Ацетилен
Этот газ является первым и основным представителем алкинов гомологического ряда. По международной номенклатуре химических соединений ИЮПАК его название – этин. Формула – C2h3. Ацетилен – бесцветный, горючий, в смеси с воздухом взрывоопасен. Газ, благодаря тройной связи в молекуле, легко участвует в реакциях присоединения. Во время его сгорания выделяется значительное количество тепла, что используется в ацетиленовой горелке.
Ацетилен нельзя применять в чистом виде, поскольку в свободной форме он очень взрывоопасен. Для заправки в баллон его разбивают на мелкие частицы путем растворения в ацетоне. Этот способ позволяет снизить взрывоопасность ацетилена и заправить в баллон достаточно большое количество газа. Используют баллоны, окрашенные в белый цвет, надпись красная. При работе необходимо сохранять вертикальное положение баллона и оставлять остаточное давление, что снизит потери.
Сколько ацетилена содержится в баллоне 40 л?В баллон закачивается технический ацетилен, соответствующий ГОСТу 5457, в него помещается:
- по объему – 5,3 м3;
- по массе – 5 кг газа.
Получение ацетилена из карбида кальция
Распространенный способ получения ацетилена для сварки – из воды и карбида кальция в ацетиленовых генераторах во время сварочного процесса.
Карбид кальция представляет собой твердый кускообразный материал, имеющий выраженный чесночный запах. Характерная особенность этого материала – интенсивное поглощение воды. Технический карбид кальция содержит, помимо CaC2, примеси: оксид кальция, кокс и другие.
Определение!Количество литров газообразного ацетилена при давлении 760 мм рт. ст. и +20°C, производимого из 1 кг карбида в результате затворения водой, называют литражом.
Можно ли определить качество карбида кальция по цвету?Чем чище карбид кальция, тем больше ацетилена получают при разложении 1 кг продукта (тем выше его литраж). При содержании чистого CaC2 в количестве 60-75% разлом материала имеет серый цвет, который при возрастании процентного содержания CaC2 переходит в фиолетовый. Высокопроцентный карбид кальция (от 80% CaC2) может иметь цвет от светло-коричневого до голубовато-черного.
Виды генераторов для получения ацетилена из карбида кальция
ГОСТ 5190 определяет несколько классификационных признаков для ацетиленовых генераторов:
- по давлению получаемого газа: низкого – до 0,01 МПа, среднего – 0,07-0,15 МПа, высокого – более 0,15 МПа;
- по производительности: 0,3-160 м3;
- по способу применения: стационарные и передвижные;
- по принципу действия: «карбид в воду», «вода на карбид» по «сухому» и «мокрому» процессам.
Рассмотрим основные виды ацетиленовых генераторов.
«Карбид в воду»
Это наиболее популярное оборудование. Принцип работы промышленного варианта:
- карбид периодически из бункера подается отдельными порциями в газообразующую камеру через питатель, в камере газообразования находится вода;
- подача карбида осуществляется периодически при падении давления в бункере с водой ниже установленного уровня;
- в газообразующей камере в результате реакции карбида и воды образуется ацетилен, подаваемый в ацетиленовый шланг;
- осадок – гашеная известь – удаляется через выпускной клапан.
В домашних мастерских, на небольших производствах и стройплощадках востребован мобильный ацетиленовый генератор типа АСП-10 производительностью 1,25 м3/час. Его разовая загрузка – 3,5 кг карбида кальция оптимальной фракции 25-80 мм. Без перезарядки он может работать 0,8 часа. Агрегат состоит из корпуса с крышкой и мембраной, корзины для карбида, предохранительного клапана и жидкостного затвора, сливных штуцеров, поддона, манометра. Вверху корпуса находится газообразователь, в котором и происходит разложение CaC2 с генерацией ацетилена. Ацетилен накапливается в газосборнике.
Преимуществами подобных генераторов являются: наиболее полное разложение карбида кальция (до 95%), хорошее охлаждение, удобство обслуживания.
«Вода на карбид» по принципу «мокрого» процесса
Принцип работы оборудования заключается в периодической подаче воды на карбид, загруженный в реторту. Образовавшийся газ выходит в газосборную камеру, откуда через отборник поступает в шланг для сварки.
Преимущества аппаратов: надежность и простота конструкции. Минусы:
- возможность перегрева ацетилена из-за малого количества воды;
- неполное разложение карбида;
- небольшая производительность.
«Вода на карбид» по принципу «сухого» процесса
В барабан генератора подается карбид и поступает вода, количество которой в два раза превышает необходимое для полного распада карбида. Благодаря высокой температуре лишняя вода испаряется. Гашеная известь через решетчатые стенки опускается вниз и выводится за пределы агрегата. Известь из-за испарения воды получается сухой, поэтому процесс получил такое название. Образовавшийся ацетилен подается в сварочный шланг через отборник.
Преимущества процесса: простота обслуживания оборудования и удаления извести. На таком принципе основана работа стационарных генераторов среднего уровня производительности.
Газы-заменители ацетилена
Для сварки металлов может использоваться не только ацетилен, но и другие газы, а также пары горючих жидкостей.
Определение! Для сварки металлов и сплавов могут применяться газы, которые способны давать температуру пламени, в два раза превышающую Tпл обрабатываемых материалов.
Газы-заменители, производимые в промышленных масштабах, как правило, дешевле ацетилена и просты в приобретении, поэтому способны значительно снизить стоимость и упростить сварочные работы. Но, по сравнению с ацетиленом, все они имеют более низкую температуру сгорания. Поэтому их применение обычно ограничивается областями, в которых слишком высокая температура пламени не требуется:
- сварка легкоплавких цветных металлов (алюминия и магния), их сплавов, свинца;
- высоко- и низкотемпературная пайка;
- поверхностная закалка;
- сварка тонколистового стального проката;
- поверхностная и разделительная кислородная резка.
Особенно широко газы-заменители применимы в ходе кислородной резки, при которой температура пламени не сказывается на качестве процесса, а только определяет время предварительного прогрева материала.
Могут ли для газосварки использоваться пропан и метан?Эти газы могут применяться для сварки, но только при условии дополнительного использования кремний- и марганецсодержащей проволоки. Кремний и марганец выполняют роль раскислителей. При сварке чугуна и цветных металлов этими газами необходимо применять флюсы.
Какая сварочная проволока применяется для газовой сварки?
Для сварки в качестве присадочных материалов применяют обычно проволоку, прутки и гранулы с химическим составом, аналогичным свариваемому металлу. Их температура плавления должна быть равна или ниже, по сравнению с обрабатываемым материалом. Поверхность проволоки – чистая, без ржавчины, масел, окалины. Проволока для газосварки и наплавки производится в соответствии с тем же стандартом, что и для дуговой сварки, – ГОСТом 2246.
Как поступить, если нет возможности достать сварочную проволоку требуемого состава?Для работы с нержавеющей сталью, медью, латунью или свинцом в порядке исключения используют полоски из материалов такой же марки, как и свариваемый металл.
Как выбрать проволоку в соответствии со свариваемым материалом и эксплуатационным назначением изготавливаемой продукции?
- Для ответственных сварных металлоконструкций и изделий рекомендуется применять марганцевую и кремнемарганцевую проволоку: Св-08ГА, Св-10Г2, Св-08ГС, Св-08Г2С.
- Для низколегированных марок используют низколегированную проволоку, содержащую хром.
- Для чугуна предназначаются прутки, выпускаемые по ГОСТу 2671. Они делятся на марку А, востребованную для горячей сварки с общим предварительным подогревом изделия, и Б – для сварки с местным подогревом. Марки НЧ-1 и НЧ-2 используют для низкотемпературной газосварки литых элементов.
- Для сварки алюминия и сплавов на его основе предназначена проволока, соответствующая ГОСТу 7871: Св-А1, Св-АМц, Св-АК-5, Св-АМг.
- Для меди и ее сплавов выпускается присадочная проволока, регламентируемая ГОСТом 16130 (М1, МСр1), или прутки М1р и М3р.
Назначение флюсов для газовой сварки
При нагревании во время сварочного процесса медь, алюминий, магний и сплавы на их основе интенсивно взаимодействуют с кислородом воздуха или сварочного пламени. В результате на металлической поверхности образуются оксиды, температура плавления которых превышает температуру плавления основного металла. Оксидная пленка значительно усложняет сварку.
Предотвратить появление поверхностных оксидных пленок помогают специальные пасты или порошки, то есть флюсы. Эти составы наносятся предварительно на кромки свариваемых элементов и сварочную проволоку (прутки). При нагреве флюсы образуют легкоплавкие шлаки, предотвращающие образование тугоплавких оксидов. Функции флюсов выполняют: прокаленная бура, борная кислота, оксиды и соли лития, бария, калия, фтора, натрия и другие. Вид состава определяется свойствами свариваемого металла. База флюса для кислородной резки – железный порошок.Флюсы также могут использоваться для специальных легированных сталей и чугуна. Для обычных «черных» сталей не применяются.
www.navigator-beton.ru
Получение и применение ацетилена | Сварка и сварщик
Широкое распространение имеют два способа получения ацетилена:
- Разложением карбида кальция водой в специальных ацетиленовых генераторах. (см. статью «Карбид кальция и ацетилен друзья не разлей вода»)
- Из углеводородных продуктов, содержащихся в природных газах, нефти, газах от переработки угля и торфосланцев.
На данный момент способ получения ацетилена из карбида кальция используется редко, поскольку он довольно громоздкий, дорогой и требующий затрат большого количества электроэнергии.
Поэтому на смену ему пришел способ производства ацетилена из природного газа (метана) термоокислительным пиролизом метана с кислородом (так называемый пиролизный ацетилен).
Метан сжигают в смеси с кислородом в реакторах при температуре 1300-1500°C. В результате чего получается смесь, которая содержит:
- ацетилен - до 8%;
- водород - 54%;
- окись углерода - 25%;
- примеси – до 13%.
При помощи растворителя (диметилформамида) из нее извлекается ацетилен концентрации 99,0-99,2%. Оставшаяся часть пиролизных газов используется для производства аммиака и других продуктов.
Также ацетилен получают путем разложения жидких горючих (нефть, керосин) действием электродугового разряда, который называется электропиролизом.
Пиролизный и электропиролизный ацетилена по своим свойствам является идентичным ацетилену, получаемому из карбида кальция, но дешевле на 30-40%.
Применение ацетилена
Ацетилен применяется при всех процессах газопламенной обработки металлов (газовой сварки и газовой резки), благодаря высокой температуры пламени, достигнуть которой при использовании других горючих не удается.
Для пайки, резки, наплавки, газопламенной закалки, металлизации, газопрессовой сварки, сварки цветных металлов и сплавов с успехом применяются газы-заменители ацетилена: пропано-бутановые смеси, городской газ, природные газы, водород, пары бензина и керосина и др. По химическому составу все они, за исключением водорода, представляют собой или соединения, или смеси различных углеводородов.
Правильный выбор и использование газов-заменителей позволяет добиться высокого качества сварки и резки, а при резке металлов малых толщин дает более высокую чистоту резки.
Газовая сварка возможна при условии, что температура пламени в два раза превышает температуру плавления свариваемого металла. Поэтому газы-заменители температура пламени, которых ниже чем у ацетилена применяют для сварки металлов с температурой плавления ниже, чем у сталей
Для газовой резки выбор горючего газа основывается на его теплотворной способности, но необходимо учитывать, что газ при сгорании в смеси с кислородом должен образовывать пламя с температурой не ниже 2000°C.
Давайте остановимся еще на некоторых особенностях применения ацетилена при газовой сварке – влияние примесей в ацетилене на качество сварного шва. Вредное влияние имеют следующие примеси:
- сероводород;
- фосфористый водород.
Вышеуказанные примеси обязательно удаляются из ацетилена, не только из-за влияния на качество сварного шва, но также из-за пагубного влияния на органы дыхания и зрения сварщика (см. статью Взрывоопасность, ядовитость и самовоспламенение ацетилена).
Сероводород при сгорании образовывает серную кислоту, которая при переходе в металл сварного шва вызывает красноломкость. Установлено, что наличие сероводорода до 0,007% не оказывает вредного влияния на прочность сварного шва.
Определить наличие сероводорода в ацетилене довольно легко, необходимо поднести фильтровальную бумагу, смоченную в растворе хлористой ртути под струю ацетилена. При наличии сероводорода - бумага побелеет. Процесс очистки от сероводорода тоже довольно простой – необходимо ацетилен пропустить через воду, в результате чего сероводород растворится в воде.
Фосфористый водород при сгорании образовывает фосфорную кислоту, которая при переходе в металл сварного шва вызывает хладноломкость. Установлено, что наличие фосфористого водорода до 0,027% не оказывает вредного влияния на прочность сварного шва.
Для определения наличия фосфористого водорода необходимо кусок фильтровальной бумаги, смоченной в десятипроцентном растворе азотнокислого серебра поднести под струю ацетилена. При содержании 0,01% фосфористого водорода бумага принимает отчетливую светло- желтую окраску, при содержании более 0,02% - бумага темнеет.
Химическим путем ацетилен очищают от фосфористого водорода путем пропускания через особую очистительную массу – гератоль. Гератоль представляет собой массу желтого цвета, которая в результате взаимодействия с фосфористым водородом приобретает зеленый цвет.
Помимо газопламенной обработки ацетилен широко используют в химической промышленности в качестве основного исходного вещества для получения ряда важнейших продуктов органического синтеза: синтетического каучука, пластмасс, растворителей, уксусной кислоты и т. п.
Продуктом присоединения воды к ацетилену является уксусный альдегид. Впервые этот синтез был осуществлен М. Г. Кучеровым в 1881 г. Реакция протекает по уравнению
HC = CH + h3O → Ch4 - CHО
Реакция проводится пропусканием ацетилена через сернокислый раствор соли окиси ртути при температуре 70-80°C.
Применение этой реакции явилось началом промышленного синтеза органических веществ с использованием ацетилена в качестве исходного продукта.
При пропускании смеси ацетилена и паров воды в соотношении примерно 1:10 при температуре 430-450°C над цинк-ванадиевым катализатором происходит образование ацетона по уравнению:
2C2h3 + 3h3O → Ch4-CО-Ch4 + CО2 + h3О
Указанный процесс нашел применение в промышленных масштабах.
При взаимодействии ацетилена с хлористым водородом при 200°C над катализатором, представляющим собой двухлористую ртуть, нанесенную на активированный уголь, образуется хлористый винил по уравнению:
C2h3 + HCl → Ch3 = CHCl
C уксусной кислотой также в присутствии ртутных солей ацетилен образует винилацетат:
C2h4 + Ch4COOH → Ch3 = CH-ОCО-Ch4
Хлористый винил и винилацетат широко применяются при производстве пластмасс.
При пропускании ацетилена через насыщенный раствор однохлористой меди и хлористого аммония при температуре 50°C образуется винилацетилен.
Реакция протекает по уравнению:
CH ≡ CH + CH ≡ CH → CH ≡ C-CH ≡ Ch3
В результате присоединения хлороводорода к винилацетилену образуется хлоропрен, который способен к быстрой и самопроизвольной полимеризации с образованием каучука высоких технических качеств.
Химия винилацетилена нашла широкое теоретическое обобщение, что позволило значительно расширить область применения этого продукта.
При взаимодействии ацетилена со спиртами в щелочном растворе образуются простые виниловые эфиры.
Так, например, реакция между ацетиленом и этиловым спиртом протекает по уравнению:
C2h3 + C2H5ОH → h3C = CH-O-C2H5
Эта реакция была открыта А. Е. Фаворским в 1887 г.
weldering.com
Особенности газовой сварки цветных металлов
Июль 4, 2017
Газовая сварка и резка цветных металлов сегодня один из наиболее востребованных видов работ в строительной сфере. Газосварка – тип сварочных работ, в процессе которых соединяемые заготовки из металла нагреваются до температуры плавления материала при помощи высокотемпературного пламени. Технология очень часто используется для соединения тонких элементов конструкций, выполненных из углеродистой стали, ремонта чугунных изделий, устранения дефектов различных литых деталей, выполненных из цветных металлов.
Особенности метода
При проведении газосварочных работ важно сделать качественный сварной шов, поэтому кромки соединяемых образцов подвергаются предварительной подготовке, обоснованно подбирается метод соединения, определяется наиболее оптимальный вариант положения горелки и ее необходимая мощность.Особенности техники газосварки – тщательная очистка кромок соединяемых изделий от любых видов загрязнений. При помощи ручного, пневматического зубила, специализированного станка выполняются скосы кромок. А с помощью щетки по металлу удаляются шлакообразования, окалины. Прихватка кромок предоставляет возможность предупредить в период выполнения сварного соединения изменения их первоначального расположения друг к другу.
Составляющие газовой сварки
Кислород
Используется для выполнения сварочных работ, резки металла. Он помогает мгновенно воспламеняться парам горючей смеси, выступает в качестве катализатора в процессе плавления, резки металлических изделий. Данный газ храниться под неизменным давлением в специализированных баллонах.
Важно! При контакте с маслом кислород способен самовозгораться!
Ацетилен
Газ для сварки, в состав которого входит кислород и водород. Предусматривает присутствие в небольших объемах h3S, Nh5. Получается в процессе диссоциации углеводородов жидкого состояния под воздействием электрического тока, обычно при диссоциации в газовом баллоне карбида кальция при помощи воды.
Важно! При давлении больше 1.5 кг/см², температуре больше 400 градусов газовая смесь способна взорваться.
Заменители ацетилена
Основное правило сварки – чтобы процедура свершилась, на выходе температура обязана превышать в два раза порог плавки материала.В качестве заменителей ацетилена могут выступать следующие газы: водород, пропан, пары керосина, температура горения которых от 2,4 до 2,8 тысяч градусов. Температура горения самого ацетилена составляет 3,2 тыс. градусов.
Ключевое достоинство применения вышеуказанных газов – это дешевый процесс производства.
Сварочный флюс, проволока
Флюс, присадочная проволока – неотъемлемые составляющие газосварочного оборудования, необходимые для получения надежного высококачественного сварного соединения.
Особенностью процесса является то, что присадочная проволока применяется исключительно без краски, на ее поверхности не должно быть следов коррозии, масляных пятен. Порог плавления проволоки должен совпадать с порогом плавления соединяемого металла, быть меньше. Если подобного типа проволоки для сварки нет под рукой, можно использовать тонкую полоску из аналогичного металла.
Важно! Для плавящихся металлов необходимо обязательное присутствие защитных флюсов (можно использовать борную кислоту).
Преимущества
- Газовая сварка металлов осуществляется без применения сложного оборудования.
- Любые расходные материалы, требующиеся для выполнения газосварки, есть в свободной продаже.
- Технология позволяет производить сварочные работы без необходимости в использовании мощного источника энергии, иногда даже без специализированных средств защиты.
- Регулировка сварочного процесса: установка необходимых параметров мощности пламени газовой горелки, контроль температуры нагревания металла.
Недостатки
- Медленное нагревание металла.
- Широкая тепловая зона, создаваемая горелкой.
- Рассеиваемую тепловую энергию газовой горелки достаточно трудно концентрировать.
- Довольно дорогостоящая технология соединения металлических изделий. Необходимое количество кислорода, ацетилена для выполнения сварочных работ стоит гораздо дороже, чем расходуемое электричество для выполнения аналогичных мероприятий.
- Скорость сварки существенно падает в случае соединения толстых металлических образцов из-за достаточно слабой концентрации теплового потока газовой горелкой.
- Газосварка довольно плохо поддается автоматизации.
Газовая технология сварки металлических изделий предусматривает плавление металла, в результате которой создается гомогенная структура. Газовая смесь горит благодаря добавлению в нее кислорода.
electrod.biz
Газовая сварка и резка металлов: технология и материалы
Газовая сварка и резка металлов позволяют соединять между собой детали металлических конструкций в промышленности и быту. Это такой технологический процесс, при котором горючее газовое вещество с чистым кислородом под влиянием высоких температур сцепляет кромки поверхностей. Расстояние между ними заливают расплавленным материалом, источником которого является присадочная проволока.
Преимущества и недостатки газовой сварки
Газовая сварка – довольно простая технология, имеющая много положительных аспектов:
- Возможность проводить сварочные работы в автономном режиме. Для этого не нужен мощный источник энергии.
- Наличие простого негабаритного оборудования, которое легко поддается транспортировке.
- Процесс сварки регулируемый. Газовая горелка позволяет варьировать рабочую высокую температуру, скорость нагрева и угол наклона огня.
А также большие возможности использования: обработка применяется для соединения элементов изделий из углеродистой стали, свинца, меди, чугуна, латуни, бронзы, силумина, алюминия и его сплавов.
Есть и недостатки при проведении сварочных работ:
- Большая площадь нагрева, создающая условия для деформации соседних элементов.
- Газосварочный процесс относится к работам повышенной опасности. Сжатый кислород, и горючие смеси требуют соблюдения мер предосторожности.
- Газовая сварка предназначена для металлов толщиной до 5 мм.
- Отсутствие автоматизации газовой горелки.
- Высокие требования к профессии сварщика.
Газовая сварка металлов и труб
Виды используемых газов
Газовая сварка и резка металлов направлены на локальное плавление участка детали. В качестве горючего материала используют разные виды. Их выбор определен многими факторами. Основные из них – температура огня и количество тепла при сгорании. При сварке применяют несколько химических веществ.
Кислород
Важнейший элемент для пайки и резки. Он используется в качестве катализатора, необходимого для активизации процессов обработки металлов. Для него характерно отсутствие цвета и запаха, плохая растворимость в воде и спирте. Кислород является активным химическим соединением. Его содержат в специальных емкостях под постоянным давлением. Для кислородной сварки используют технический газ трех сортов. Каждый вид зависит от чистоты кислорода. Это свойство влияет на качество обработки деталей.
Ацетилен
Наиболее распространенный вид, так как обеспечивает высокую температуру по сравнению с другими воспламеняющимися веществами. Он образуется на основе углеродистого кальция с водой. Химическое вещество поглощает влагу из атмосферы и расщепляется под ее влиянием, поэтому соединение хранят в закрытых барабанах. Ацетилен взрывоопасный. Однако это качество исчезает, если смесь растворить в жидкости.
Ацетилен – один из самых распространенных газов
Водород
Не имеет запаха и цвета. При контакте с воздухом становится взрывоопасным. Химический элемент хранят в стальных баллонах под давлением.
Коксовый газ
Образуется посредством переработки каменного угля. Это бесцветная смесь горючих веществ с выраженным сероводородным запахом, которую транспортируют по трубопроводам.
Природный газ
Используют на основе метана, добываемый из недр Земли.
Бензин и керосин
Продукты нефтеперерабатывающей отрасли. Имеют вид бесцветных жидкостей с запахом, которые легко испаряются. Газовая горелка подает их через испарители для образования пара.
Пиролизный газ
Подвергается очистке, так как состоит из углеводородов и угарного газа. Это побочный продукт предприятий по переработке нефти.
Материалы, подходящие для газовой сварки
Фото устройства горелок для газовой сварки
Газовая сварка незаменима в промышленности, строительстве, сельском хозяйстве. Она позволяет скреплять большое количество металлов.
Сварка чугуна необходима для устранения дефектов, трещин, распавшихся частей изделия. Газовая горелка при этом должна быть с небольшим пламенем, чтобы избежать зернистости сварочного шва.
Пайка бронзы предполагает использование восстановительного пламени. В работе используют проволоку, идентичную свариваемому материалу.
Обработка меди не предусматривает наличия зазора между краями. Это обусловлено текучестью материала, что может затруднять газосварочный процесс.
Углеродистые стали можно соединять разными методами сварки. Швы становятся крупнозернистыми благодаря использованию стальной проволоки с низким уровнем углерода.
Необходимое оборудование для газосварки
Газосварочное оборудование применяется с целью соединения или резки металлических элементов под действием высокой температуры. Оно предполагает использование разных видов приборов и аксессуаров, в зависимости от вида проводимых работ. Для обработки металла используются несколько компонентов.
Водяной, или жидкостный затвор
Защищает части устройств от обратного удара сварочного пламени. Это может случиться тогда, когда скорость подачи газа меньше скорости возгорания, или в случае засорения каналов мундштука горелки. Таким предохранительным устройством оснащены все генераторы.
Баллоны с газом
Специальные цилиндрические резервуары с вентилями для хранения и транспортировки химического вещества. Определить, какой в них содержится вид, можно по цвету.
Баллоны с газом для сварки
Редуктор
Снижает давление газа или держит его на определенном уровне. Устройство бывает прямого и обратного действия. Это важный элемент газобаллонного оборудования, который определяет работоспособность всей системы. Есть разные виды устройств, среди которых – кислородный редуктор. Он приспособлен к агрессивной среде и имеет голубую маркировку.
Для газовой сварки, как правило, используются простейшие однокамерные редукторы
Газовый шланг
Обеспечивает подачу горючих жидкостей. Он сделан по особой технологии. Это многослойное изделие, выдерживающее агрессивную среду, с внутренним диаметром не больше 16 мм. В зависимости от категории, шланги маркируют красным, желтым и синим цветом.
Газовые рукава
Газовая горелка
Является основной частью сварочного оборудования. Она образует пламя, необходимо для нагревания и плавления металла. По конструкции изделие бывает двух видов: инжекторного и безинжекторного. Газовая горелка работает на разных мощностях. Выбор зависит от количества газа, подаваемого в единицу времени.
Схема устройства газовой горелки
Специальный стол
Повышает удобство работы сварщика, так как выполняет несколько функций:
- фиксирует рабочие заготовки;
- хранит вспомогательный инструмент;
- является контуром заземления.
В конструкции может быть поворотная или статичная столешница.
Схема стола для сварки
Газовые резаки
Демонтаж металлоконструкции и раскрой проката невозможен без газового резака. Модели такого устройства имеют одинаковый принцип работы, но отличаются между собой размерами, конструкцией, наличием дополнительных деталей. С помощью газового резака можно выполнять работы с заготовками большой толщины. Резка происходит за счет того, что температура горения меньше температуры плавления.
Процесс условно разделяется на периоды:
Резак газовый
- Обрабатываемая зона разогревается до нужной температуры. Для получения факела пламени кислород смешивают с горючим веществом в определенной дозировке.
- Кислород способствует раскислению металла, продукты горения удаляются из рабочей зоны.
Конструкция газового резака бывает двух видов:
- Инжекторная – двухтрубная, когда технический кислород разделяется на два потока.
- Безинжекторная, или трехтрубная, при которой кислородный и газовый поток движется по разным трубкам, смешиваясь внутри головки.
Технологический процесс газовой резки
При изготовлении металлических конструкций используется не только газовая сварка, но и резка металлов. Она позволяет работать с такими заготовками:
Газовая резка
- диски, кольца;
- контурные элементы, сочетающие прямые и изогнутые линии из стали толщиной до 200 мм:
- детали сложной конфигурации;
- листы толщиной более 4 мм;
- швеллеры от №16;
- двутавровые балки от №20.
Чтобы получить высококачественный рез, поверхность металла предварительно очищается от грязи, краски, масла или ржавчины. Резка металлов – это термический способ обработки, разделенный на этапы:
- Нагреватель доводит температуру до 1100 0С.
- Газовая горелка подает в рабочую зону кислород.
- Струя, соприкасаясь с металлом, воспламеняется. Ядро пламени должно располагаться на расстоянии от 1 до 1,5 мм от обрабатываемой поверхности.
- В условиях стабильной подачи газа поток легко разрезает заготовку. Скорость струи зависит от химического состава разрезаемого материала.
Способы сварки
Техника безопасности
Газовая сварка и резка не обходятся без соблюдения правил техники безопасности. Во время работы сварщик подвергается всевозможным потенциальным опасностям. Меры предосторожности комплексные:
От поражения электротоком нужна такая защита:
Инструкции по технике безопасности
- Заземление аппарата.
- Изоляция токопроводящих частей оборудования.
- Сухая, неповрежденная одежда.
- Исключение работ в мокрую погоду.
Защита зрения требует использования специальной маски со светофильтрами.
Газовая сварка – это угроза ожогов, взрывов пожаров. Избежать аварийной ситуации помогут:
- Экипировка в спецодежду.
- Отсутствие в местах проводимых работ открытых горючих, легковоспламеняющихся веществ.
- Наличие средств пожаротушения.
- Соблюдение технологического режима.
Против отравления ядовитыми парами используют:
- Респираторы.
- Эффективную вентиляцию в помещении.
- Маски, схожие с противогазами.
Видео по теме: Работа резака и обучение резки металла
promzn.ru
Автогенная сварка и резка металлов
Водород н, Синтез аммиака, углеводородов, метанола, соляной кислоты и т.д. Применяется при автогенной сварке и резке металлов [c.260]
Развивающейся при горении ацетилена в смеси с кислородом высокой температурой (около 3000 °С) пользуются для автогенной сварки и резки металлов. На воздухе ацетилен горит белым пламенем, сильно коптящим вследствие неполного сгорания углерода. [c.498]
В больших количествах ацетилен применяется для автогенной сварки и резки металлов. [c.88]А карбид кальция — вещество, открытое случайно при испытании новой конструкции печи Несколько лет назад карбид кальция СаСг использовали главным образом для автогенной сварки и резки металлов. При взаимодействии карбида с водой образуется ацетилен. Горение ацетилена в струе кислорода позволяет получать температуру почти 3000° С. В последнее время ацетилен, а следовательно, и карбид, все меньше расходуются для сварки и все больше — в химической промышленности. [c.306]
Ацетилен является исходным сырьем для многих производств. Галогенпроизводные на его основе — хорошие растворители уксусный альдегид, получаемый из ацетилена по реакции Куче-рова, перерабатывают в этиловый спирт и уксусную кислоту, а из винилхлорида, также полученного при участии ацетилена, производят высокомолекулярное соединение — поливинилхлорид. Присоединение к ацетилену циановодорода приводит к образованию акрилонитрила, полимер которого идет на производство волокна нитрон. Ацетилен используют также в производстве простых и сложных эфиров, полимеры которых применяют в медицине, лакокрасочной промышленности, в производстве пластмасс, в автогенной сварке и резке металлов либо в смеси с кислородом, либо вместе с кислородом и водородом. Такие смеси при горении развивают очень высокую температуру (до 2800 °С). [c.257]
Ацетилен используется для автогенной сварки и резки металлов, он сгорает в кислороде, выделяя большое количество теплоты (температура пламени достигает 3500 °С). [c.332]
К достоинствам процесса электролиза воды относится также одновременное получение кислорода, находящего разнообразное применение в различных отраслях народного хозяйства — для интенсификации доменного процесса, для плавления платины, кварца и других тугоплавких материалов, при автогенной сварке и резке металлов, где необходимы температуры выше 2000° С. Кислород широко используется также в химической промышленности в производстве азотной, серной, уксусной кислот, метанола, формальдегида, в процессах газификации углей, конверсии метана и др. Жидкий кислород употребляется для достижения низких температур, приготовления некоторых видов взрывчатых веществ. Чистый кислород используется в медицине для улучшения затрудненного дыхания, при отравлениях окисью углерода, углеводородными газами и т. д. Важное значение приобрело обеспечение кислородом людей, находящихся в герметичных помещениях, в космических кораблях, выполняющих подводные и различные спасательные работы. [c.10]
Для наполнения аэростатов, шаров-пилотов для гидрогенизации жиров, гидрирования ароматических углеводородов, нефтепродуктов, углей, смол для автогенной сварки и резки металлов как восстановитель в производстве органических полупродуктов и красителей [c.135]
Ацетилен — бесцветный газ, очень ядовит. Смесь его с воздухом или кислородом при поджигании сильно взрывает. В сжатом виде, особенно в жидком состоянии, взрывает даже от слабого толчка. Поэтому его хранят и перевозят в виде раствора в ацетоне. На воздухе горит ярким сильно коптящим пламенем. В струе кислорода сгорает без копоти и дает пламя с очень высокой температурой (2800°С). Ацетиленово-кислородное пламя применяют в автогенной сварке и резке металлов. [c.246]
Оборудование для автогенной сварки и резки металлов, [c.137]
Так как при сгорании ацетилена, особенно в кислороде, развивается очень высокая температура (даже более высокая, чем при сгорании водорода), то ацетилен-кислородным пламенем широко пользуются для автогенной сварки и резки металлов. [c.94]
Попробуйте подсчитать, сколько процентов углерода содержится в молекуле метана СН4 или этана СаН и в молекуле ацетилена СгН 2. Вам станет ясно, почему метан и этан горят несветящимся пламенем, а ацетилен в обычных условиях горит светящимся и даже коптящим пламенем. При сжигании ацетилена в специальных горелках, в которые вместо воздуха подводится кислород, развивается очень высокая температура. Это широко используется в технике при так назы ваемой автогенной сварке и резке металлов. [c.39]
Применяют для заполнения аэростатов, шаров-пилотов, а в промышленности—для гидрогенизации жиров, гидрирования ароматических углеводородов, нефтепродуктов, углей и смол для автогенной сварки и резки металлов как восстановитель в производстве органических полупродуктов и красителей в производстве металлического порошка из окалины и др. [c.53]
Ацетилен широко применяется для автогенной сварки и резки металла. Креме того, он служит важным сырьем для производства синтетического каучука и многих других органических веществ. [c.77]
Ацетилен нашел широкое применение для автогенной сварки и резки металлов, а также в химической промышленности для получения ряда веществ уксусной кислоты, синтетического каучука, пластических масс, различных растворителей и т. д. [c.207]
Наиболее массовое применение кислород находит в автогенной сварке и резке металлов. При помощи кислородного резака вручную или специальными автоматами можно легко сверлить и разрезать толстую стальную броню, рельсы или стальные слитки. Кислородный резак в принципе — та же автогенная горелка. [c.222]
Но в смеси с кислородом он горит ярким пламенем с температурой около 3000° С. Кислородно-ацетиленовое пламя используют для автогенной сварки и резки металлов. [c.303]
На практике смесь ацетилена с кислородом используется для автогенной сварки и резки металлов, при этом развивается очень высокая температура (3000 °С).-Процесс горения можно выразить уравнением [c.51]
В дальнейшем было установлено, что раство ры ацетилена (обычно пользуются раствором ацетилена в ацетоне при 1 от 1 л ацетона растворяет 25 л ацетилена обычное давление в ацетиленовых бомбах—12—15 ат), особенно в присутствии пористых веществ, практически совершенно безопасны. Однако пока преодолевались все эти препятствия, на рынке появились более сильные конкуренты в виде газокалильного света и электрической лампочки накаливания. С 1906 г. ацетиленом начинают пользоваться для автогенной сварки и резки металлов. [c.271]
Ацетилен применяют для получения ряда органических соединений, в частности одного из видов синтетического каучука, а также для автогенной сварки и резки металлов. [c.369]
Значительное количество ацетилена (а также и карбида кальция) потребляется для автогенной сварки и резки металлов в смеси с кислородом температура такого пламени доходит до 3000° С и выше. При этом ацетилен получается обычно на месте потребления в переносных генераторах, работающих по мокрому способу , а иногда доставляется в баллонах в виде раствора его в ацетоне, которым пропитывается пористая масса (пемза, силикагель, древесный уголь и т. д.). Давление в баллоне доходит до 16 ат (при 20° С). [c.277]
Жидкий кислород применяют в реактивных двигателях, в автогенной сварке и резке металлов, причем последнюю операцию можно производить и под водой. С зажженным на воздухе резаком водолаз спускается в веду вода охлаждает пламя, но не гасит его. [c.152]
Благодаря высокой температуре горения ацетилен в смеси с кислородом используется для автогенной сварки и резки металлов. [c.295]
При горении ацетилена в кислороде температура пламени достигает 3000°, что обусловило широкое применение ацетилена для автогенной сварки и резки металлов. Однако с развитием электросварки использование ацетилена при сварных работах значительно сократилось. [c.443]
Так как этилен получается в качестве побочного продукта при крекировании нефти, то он представляет дешевое сырье и широко используется в технике, например при производстве винного спирта, этиленгликоля, иприта. Применяют его также вместо ацетилена при автогенной сварке и резке металлов. Этилен употребляют для ускорения вызревания лимонов. [c.42]
Для автогенной сварки и резки металлов пользуются специальной горелкой, содержащей три вставленные друг в друга трубки. Ацетилен входит по средней трубке, кислород — по обеим крайним, благодаря чему достигается лучшее перемешивание газов. Кислород поступает из содержащих его баллонов, а ацетилен или получают на месте работы, или выделяют из раствора его в ацетоне. Под давлением 12 ат 1 объем ацетона растворяет 300 объемов iHj, под обычным давлением — только 25. Поэтому при открывании крана у баллона с таким раствором из него выделяется ток jHj. Содержащие его баллоны имеют белую окраску с красной надписью Ацетилен . [c.535]
При сжигании метана выделяется большое количество тепла. Этот газ (например, в виде приролного газа) можно с успехом применять для освещения и отопления, взамен ацетилена при автогенной сварке и резке металлов, а также в виде моторного топлива. Большое значение приобретает так ке химическая переработка метана (рис. 10). [c.37]
С водородом углерод дает множество различных соединений (их насчитывают тысячами). Простейшее из них метан СН4. Входит в состав (до 97/о) природного газа. Как и ацетилен, горюч, взрывоопасен. В смеси с воздухом самовоспламеняются при температурах метан при 537° С и ацетилен — при 335° С. Метан широко используется (в виде природного газа) как топливо в промышленности и в быту, ацетилен—-в автогенной сварке и резке металлов. Оба газа (СН4 и С2Н2) широко используются как исходное сырье в химической промышленности. [c.417]
Применение. Ацетилено-кислородное пламя используют для автогенной сварки и резки металлов. Кроме того, из ацетилена получают уксусную кислоту, этиловый спирт, растворители, изоляционные материалы ацетилен применяется для синтеза пластических масс, искусственного каучука и ароматических углеводородов. [c.44]
Наиболее массовое применение кислород находит в автогенной сварке и резке металлов. При помощи кислородного резака вручную нли специальными автоматами можно легко сверлить и разрезать толстую стальную броню, рельсы или стальные слитки. Кислородный резак в принципе — та же автогенная горелка. В нее подается через добавочную трубку сильный ток кислорода, после того как сталь в нужном месте достаточно раскалена кислородно-ацетиленовым пламенем. Эта кислородная струя и прожигает сталь, выбрасывая расплавленный окисел железа Реа04 из прожигаемого отверстия или узкой щели в виде брызг — искр , [c.158]
При помощи водородо-кислородного, а особенно ацети-лено-кислородного пламени производятся автогенная сварка и резка металлов пламенем. Для последней цели металл сначала нагревают пламенем, а зате.м сжигают в намеченном месте, вводя в пламя избыток кислорода. [c.79]
Ацетилен Н—С=С—Н. В обычных условиях — газ с темп. кип. —83,8° С, без запаха (технический ацетилен имеет неприятный запах, обусловленный присутствием примесей). Ацетилен горит светящимся и сильно коптящим пламенем. С воздухом образует взрывчатую смесь. Он играет очень важную роль в народном хозяйстве. Ацетилено-кислородным пламенем (которое имеет температуру около 3500° С) широко пользуются для автогенной сварки и резки металлов. Ацетилен в больших количествах применяется для промышленного синтеза многочисленных органических продуктов. [c.58]
Автогенная сварка и резка металлов. Виды сварки и резки могут быть классифицированы по видам газов, которые используются при производстве этих работ 1) ацетилено-кислородная, [c.4]
Ацетилен С2Н2. Из всех ацетиленовых углеводородов наибольшее значение имеет ацетилен. Он широко используется в автогенной сварке и резке металлов либо в смеси с кислородом, либо вместе с кислородом и водородом. Такие смеси при горении развивают очень высокую температуру [c.73]
Наиболее распростраьокиой взрывоопасной примесью воздуха является ацетилен, что саяьгно с широким применением его для автогенной сварки и резки металла. Взрывоопасность ацетилена обусловлена такими его физико-химическими свойствами, как неустойчивость и активность. Обычно концентрации ацетилена в воздухе находятся на уровне 0,001—0,5 см /м и зависят от взаимного расположения места забора воздуха и ацетиленовых станций, переносных ацетиленовых генераторов, сварочных постов и цехов, мест храненин карбида кальция, захоронения его шлама и ряда других факторов, в отдельных неблагоприятных случаях концентрация ацетилена в воздухе может возрастать до 1—3 см /м , а иногда и более. [c.17]
chem21.info
Сварка, ацетиленовая - Справочник химика 21
Алкины образуют еще один ряд ненасыщенных углеводородов. В молекулах этих соединений имеется одна или несколько тройных углерод-углеродных связей. Простые алкины имеют общую эмпирическую формулу С Н2 2- Простейший представитель ряда алкинов, ацетилен, обладает высокой реакционной способностью. При горении ацетилена в токе кислорода в так называемой кислородно-ацетиленовой горелке образуется пламя с очень высокой температурой, приблизительно 3200 К (см. разд. 21.4). Кислородно-ацетиленовые горелки широко используются при сварке, где требуются высокие температуры. Алкины вообще очень реакционноспособные вещества. Вследствие этого они не столь широко распространены в природе, как алкены, однако являются важными промежуточными продуктами во многих промышленных процессах. [c.416]
Рекомендуемый сортамент электродной и сварочной проволоки для дуговой и ацетиленовой сварки цветных металлов и сплавов [c.90]Ацетилен применяют для сварки и резки металлов. Температура пламени ацетиленовой горелки 3500°С. [c.336]
Все эти эффекты интенсивно исследуют. Результаты исследований служат фундаментом для создания большого количества новых высокоэффективных технологических процессов. Речь идет прежде всего о сверлении тонких отверстий, пайке и плавлении некоторых непрозрачных для лазерного излучения тугоплавких материалов, обработка которых обычными способами (газовая и дуговая сварка, кислородное и ацетиленовое пламя, электронный и ионный пучок) затруднена или невозможна. [c.439]
А. применяют для сварки и резки металлов (максимальная температура кислородно-ацетиленового пламени 3150° С), лроизводства каучука, винилхлорида, ацетальдегида, акрилонитрила, простых и сложных виниловых эфиров, различных растворителей, ароматических углеводородов и др. [c.36]
Кислород применяется для резки и сварки металлов (ацетиленово-кислородные и водородо-кислородные горелки) для плавления кварца и получения искусственных драгоценных камней и др. Кислород, или обогащенный кислородом воздух, находит большое применение в черной и цветной металлургии, в доменном процессе, в сталеплавильном производстве, в газогенераторах. Благодаря увеличению концентрации кислорода химические процессы протекают с большими скоростями, что приводит к интенсификации различных производств, потребляющих кислород. [c.560]
При горении ацетилена в токе кислорода развивается очень высокая температура (около 3000 °Q, что широко используют для так называемой ацетиленовой сварки. [c.308]
Применение кислорода. Получаемый в промышленности кислород часто применяют для сжигания в нем различных газов, например ацетилена и водорода (в специальной горелке, состоящей из двух трубок, вставленных одна в другую). Температура ацетиленово-кислородного пламени достигает 3000 °С, в нем плавится железо это пламя применяют для автогенной сварки, резания и сверления металлов. [c.377]
Кислородно-ацетиленовые горелки используются при резке и сварке металлов. Благодаря своей ненасыщенности ацетилен используется как исходное вещество при получении различных органических соединений. Однако здесь ацетилен вытесняется более дешевым этиленом. В промышленности ацетилен получают из природного газа. Главным продуктом неполного сгорания метана, основного компонента природного газа, является ацетилен [c.594]
При газосварочных работах переносные ацетиленовые генераторы для работы следует устанавливать на открытых площадках на расстоянии не ближе 10 м от места сварки, от открытого огня и т. д. Временно их можно устанавливать в хорошо проветриваемых помеш,ениях. [c.265]
Ацетилен — бесцветный газ (т. кип. —84 °С) с характерным чесночным запахом. Чистый ацетилен при сжатии может взрываться, и поэтому его хранят в виде раствора в ацетоне под давлением. Его используют в качестве горючего при автогенной сварке и в ацетиленовых (карбидных) лампах, а также как исходное сырье при получении ряда химических продуктов . [c.190]
Кислородно-ацетиленовую сварку можно производить двумя методами методом левой сварки (фиг. 29, а) и методом правой сварки (фиг. 29, 6), которые различаются направлением движения горелки вдоль раз- [c.620]Для газопрессовой сварки труб применяется установка с многопламенной кольцевой кислородно-ацетиленовой горелкой. Трубы толщиной стенки А,Ъ мм и меньше свариваются без скоса кромок. Трубы зажимаются в губки станка и стыкуются без зазора и без смещения по вертикали. Посте сварки производят нормализацию стыка. [c.631]
При сооружении первых магистральных нефте- и продуктопроводов в СССР в 1926— ШЗб гг. в основном применялась газовая (кислородно-ацетиленовая) сварка, которая до середины 40-х годов еще использовалась при сооружении некоторых магистральных трубопроводов. Основными недостатками газовой сварки, ограничивающими ее использование, являются небольшая производительность и сравнительно низкое качество свар- [c.102]
Рекомендуемые электроды для ручной электродуговой сварки Рекомендуемые сварочные материалы для автоматической сварки под слоем флюса Рекомендуемые сварочные материалы для ацетиленовой сварки [c.91]
Ацетиленовая сварка сталей применяется в химическом аппаратостроении ограниченно в силу присущих ей недостатков. Значительный разогрев основного металла, обусловливаемый более длительным воздействием источника тепла, вызывает повышенную деформацию свариваемых узлов и способствует перегреву и росту зерна в сварном соединении. По сравнению с другими сварочными процессами ацетиленовая сварка является малопроизводительным и неэкономичным процессом. Она применяется лишь при отсутствии источников тока и в других случаях, обусловленных конструктивными соображениями или технологией изготовления. [c.122]
При сварке в стык листов разной толщины подготовка кромок должна производиться согласно п. 7 ГОСТ 8713—58 в случае применения автоматической сварки и п. 4 ГОСТ 5264—58—в случае ручной электродуговой или ацетиленовой сварки. Для двухслойных сталей скос кромки в этом случае осуществляется со стороны основного слоя углеродистой стали. [c.122]
Марки сталей, свариваемых автоматической и полуавтоматической сваркой под слоем флюса, ручной электродуговой и ацетиленовой сваркой, приведены в табл. 2. 1, электрошлаковой сваркой — в табл. 6. 5, автоматической сваркой в среде углекислого газа, автоматической, ручной и механизированной аргоно-дуговой сваркой — в табл. 6. 6. Марки сварочной проволоки и флюсов при автоматической сварке и типы электродов при ручной электродуговой сварке сталей приведены в гл. 6. [c.122]
АЦЕТИЛЕНОВАЯ СВАРКА СТАЛЕЙ [c.144]
Основными недостатками ацетиленовой сварки алюминия являются [c.146]
Наиболее проста ручная наплавка электродами вибродуго-вой или кислородно-ацетиленовой сваркой. Способ наплавки, присадочный материал, скорость наплавки устанавливают в зависимости от раз.меров детали, толщины наплавляемого слоя и т. д. Необходимая толщина может быть достигнута наплавкой в несколько слоев. Наплавленный слой должен обладать требуемыми механическими свойствами. Часто наплавку проводят с целью упрочнения поверхностных слоев детали в этом случае присадочный материал должен быть из твердых сплавов. [c.266]
Швы стыковых соединений листовой стали У-образные, со скосом двух кромок, односторонние, выполняемые ацетиленовой сваркой [31] [c.144]
Ацетиленовая сварка до недавнего времени являлась основным технологическим процессом для сварки алюминия, но в силу существенных недостатков она в настоящее время почти повсеместно вытеснена другими, более совершенными и производительными, сварочными процессами. [c.145]
Ацетиленовую сварку применяют лишь при отсутствии оборудования для других видов сварки, а также при ремонте и монтаже аппаратуры и трубопроводов на химических комбинатах. [c.145]Ацетиленовая сварка алюминия производится на медных или стальных подкладках, плотно прилегающих к шву. Сварка листового алюминия толщиной, более 6 мм производится с предварительным подогревом металла до 300—350° С. [c.146]
При ручной электродуговой и ацетиленовой сварке в стык листового алюминия разной толщины подготовку кромок рекомендуется производить согласно п. 4 ГОСТ 5264—58, при автоматической сварке — согласно п. 7 ГОСТ 8713—58. [c.146]
Сварку проводят ацетилеиокислородиым пламенем с добавлением присадочного материала. Для получения ацетилена используют генераторы различных типов, основные данные кото-ры. приведены в табл. 3.9, или баллоны с ацетиленом и другими горючими газами (водородом, пропап-бутановой смесью и др.). Ацетиленовые генераторы выпускаются производительностью 0,5—320 м ч ацетилена. Генераторы могут быть передвижные п стационарные. Передвижные генераторы имеют производительность до 3 м /ч. Генераторы по давлению делятся на три группы низкого (до 0,01 МПа), среднего (0,01 — 0,15 МПа) и высокого давления (более 0,15 МПа). Кислород доставляют в специальных баллонах под давлением 15 МПа. Для сварки применяют горелки типов Москва , ГС-3 и другие, которые могут работать с горючими газами, имеющими различный расход в зависимости от номера применяемого наконечника от 50 до 2800 л/ч и с кислородом, имеющим расход соответствеино от 55 до 3100 л/ч. Горелки Москва и ГС-3 имеют семь сменных наконечников. Это позволяет проводить сварку металла различных толщин вплоть до 30 мм одной и той же горелкой. [c.101]
Тонкостенные детали сваривают газовой сваркой с помощью газовых горелок. Однопламенные универсальные горелки применяют для кислородно-ацетиленовой сварки, пайки и подогрева (ГОСТ 1077—79Е), горелки звездочка (ГОСТ 5.1919— 73)—для тех же целей, горелки типа ГТГМ-66 (ГОСТ [c.264]
Важный параметр, характеризующий способность различных газов к быстрому нагреву, — объемная напряженность горения, которая определяется как произведение теплоты сгорания топливокислородной смеси и скорости горения. При стехиометрической газовоздушной смеси объемная напряженность горения [в (кДж/м ) (см/с)] водорода равна 840 165, ацетилена — 644 683, природного газа — 141 848, пропана— 169 439, бутана— 183 758, городского газа — 352 794. Из приведенных данных видно, что ацетилен является прекрасным топливом для осуществления газовой сварки. При использовании пропана скорость нагрева можно повысить за счет добавки ускоряющих компонентов (пропадиена, изопропилэфира, метилацетилена или окиси пропилена). Для высокоскоростной огневой резки применяют специальные газовые смеси, которые при прочих равных условиях делают кислородно-пропановую сварку конкурентоспособной с кислородно-ацетиленовой и даже электрической сваркой. [c.323]
При сгорании алкинов выдел тоя колоссальное количество г я-ла. Так, температура кислородно-ацетиленового пламени достигает 3000 С, что исполмуется для резки и сварки мегаллов. [c.121]
Кислород-третий по использованию в промышленности химикат, уступающий только серной кислоте и негашеной извести СаО. Ежегодный расход этого элемента достигает 14 млрд. кг. Он широко используется в качестве окислителя. Приблизительно половина производимого кислорода расходуется в сталеплавильной промышленности, главным образом для удаления примесей из стали (см. разд. 22.6). Кислород применяется в медицине с целью ускорения процессов окисления, необходимых для поддержания жизни. Он используется совместно с ацетиленом С2Н2 для кислородноацетиленовой сварки. Последнее применение основано на высокой экзотермичности реакции между С Н и Oj, при которой развиваются температуры, превышающие 3000°С. Реакция горения кислородно-ацетиленовой смеси описывается уравнением [c.304]
А. с водой в присутствии солей ртути и других катализаторов образует уксусный альдегид (реакция Кучерова). При сжигании А. выделяется большое количество теплоты. А. может полимеризироваться в бензол и другие органические соединения. В промышленности А. получают действием воды на карбид кальция (Ф. Велер, 1862 г.), а также при крекинге метана. А. используют для сварки и резки металлов, для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов. Ацетиленовые углеводороды (алкины) СлНгл—2 — непредельные углеводородное открытой цепью, в молекулах которых между атомами углерода имеется одна тройная связь. [c.22]
При сгорании алкинов вьщеляется колоссальное количество тепла. Так, температура кислородно-ацетиленового пламаш достигает 3000 °С, что используется для резки и сварки металлов. [c.121]
Значительный практический интерес представляет триметилборат — как исходное сырье для синтеза различных соединений бора (боргидриды натрия и калия, триметоксибороксол и др.) и в качестве флюса при ацетиленовой сварке металлов. Отметим также возможность использования низших триалкилборатов при очистке спиртов, а триэтаноламинобората — как катализатора отверждения эпоксидных полимеров. [c.377]
Генераторы системы вода на карбид более компактны расход воды в таких генераторах значительно меньше, чем в генераторах системы карбид в воду . Они очень удобны для получения ацетилена непосредственно на месте"выполнения сварочных работ (автогенная сварка). На химических заводах обычно применяются ацетиленовые генераторы системы карбид в воду производительностью до 500 м ч ацетилена и так называемые сухие пли бесшламовые генераторы производительностью 2000 ацетилена. [c.139]
chem21.info